Muutke küpsiste eelistusi

E-raamat: Big Data Management And Analytics

(Punjab Engineering College, Chandigarh, India), (National Institute Of Technology Kurukshetra, India)
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 152,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"With the proliferation of information, big data management and analysis have become an indispensable part of any system to handle such amounts of data. The amount of data generated by the multitude of interconnected devices increases exponentially, making the storage and processing of these data a real challenge. Big data management and analytics have gained momentum in almost every industry, ranging from finance or healthcare. Big data can reveal key insights if handled and analyzed properly; it has great application potential to improve the working of any industry. This book covers the spectrum aspects of big data; from the preliminary level to specific case studies. It will help readers gain knowledge of the big data landscape. Highlights of the topics covered include description of the Big Data ecosystem; real-world instances of big data issues; how the Vs of Big Data (volume, velocity, variety, veracity, valence, and value) affect data collection, monitoring, storage, analysis, and reporting; structural process to get value out of Big Data and recognize the differences between a standard database management system and a big data management system. Readers will gain insights into choice of data models, data extraction, data integration to solve large data problems, data modelling using machine learning techniques, Spark's scalable machine learning techniques, modeling a big data problem into a graph database and performing scalable analytical operations over the graph and different tools and techniques for processing big data and its applications including in healthcare and finance"--

With The Proliferation Of Information, Big Data Management And Analysis Have Become An Indispensable Part Of Any System To Handle Such Amounts Of Data. The Amount Of Data Generated By The Multitude Of Interconnected Devices Increases Exponentially, Making The Storage And Processing Of These Data A Real Challenge. Big Data Management And Analytics Have Gained Momentum In Almost Every Industry, Ranging From Finance Or Healthcare. Big Data Can Reveal Key Insights If Handled And Analyzed Properly; It Has Great Application Potential To Improve The Working Of Any Industry. This Book Covers The Spectrum Aspects Of Big Data; From The Preliminary Level To Specific Case Studies. It Will Help Readers Gain Knowledge Of The Big Data Landscape. Highlights Of The Topics Covered Include Description Of The Big Data Ecosystem; Real-World Instances Of Big Data Issues; How The Vs Of Big Data (Volume, Velocity, Variety, Veracity, Valence, And Value) Affect Data Collection, Monitoring, Storage, Analysis, And Reporting; Structural Process To Get Value Out Of Big Data And Recognize The Differences Between A Standard Database Management System And A Big Data Management System. Readers Will Gain Insights Into Choice Of Data Models, Data Extraction, Data Integration To Solve Large Data Problems, Data Modelling Using Machine Learning Techniques, Spark'S Scalable Machine Learning Techniques, Modeling A Big Data Problem Into A Graph Database And Performing Scalable Analytical Operations Over The Graph And Different Tools And Techniques For Processing Big Data And Its Applications Including In Healthcare And Finance.