Muutke küpsiste eelistusi

E-raamat: Big Data in Multimodal Medical Imaging

Edited by (University of Louisville, Kentucky, USA), Edited by (Global Biomedical Technologies, Inc., CA, USA)
  • Formaat: 330 pages
  • Ilmumisaeg: 05-Nov-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351380720
  • Formaat - EPUB+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 330 pages
  • Ilmumisaeg: 05-Nov-2019
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351380720

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

There is an urgent need to develop and integrate new statistical, mathematical, visualization, and computational models with the ability to analyze Big Data in order to retrieve useful information to aid clinicians in accurately diagnosing and treating patients. The main focus of this book is to review and summarize state-of-the-art big data and deep learning approaches to analyze and integrate multiple data types for the creation of a decision matrix to aid clinicians in the early diagnosis and identification of high risk patients for human diseases and disorders. Leading researchers will contribute original research book chapters analyzing efforts to solve these important problems.

Preface ix
Editors xi
Contributors xiii
Acknowledgments xvii
1 Multimodal Imaging Radiomics and Machine Learning
1(22)
Gengbo Liu
Youngho Seo
Debasis Mitra
Benjamin L. Franc
2 Multimodal Medical Image Fusion in NSCT Domain
23(24)
Gaurav Bhatnagar
Zheng Liu
Q.M. Jonathan Wu
3 Computer Aided Diagnosis in Pre-Clinical Dementia: From Single-Modal Metrics to Multi-Modal Fused Methodologies
47(24)
Yi Lao
Sinchai Tsao
Natasha Lepore
4 Automated Diagnosis and Prediction in Cardiovascular Diseases Using Tomographic Imaging
71(32)
Lisa Duff
Charalampos Tsoumpas
5 Big Data in Computational Health Informatics
103(40)
Ruogu Fang
Yao Xiao
Jianqiao Tian
Samira Pouyanfar
Yimin Yang
Shu-Ching Chen
S. S. Iyengar
6 Fast Dual Optimization for Medical Image Segmentation
143(26)
Jing Yuan
Ismail Ben Ayed
Aaron Fenster
7 Non-Parametric Bayesian Estimation of Rigid Registration for Multi-Contrast Data in Big Data Analysis
169(24)
Stathis Hadjidemetriou
Ismini Papageorgiou
8 Multimodal Analysis in Biomedicine
193(12)
Mohammad-Parsa Hosseini
Aaron Lau
Kost Elisevich
Hamid Soltanian-Zadeh
9 Towards Big Data in Acute Renal Rejection
205(20)
Mohamed Shehata
Ahmed Shalaby
Ali Mahmoud
Mohammed Ghazal
Hassan Hajjdiab
Mohammed A. Badawy
Mohamed Abou El-Ghar
Ashraf M. Bakr
Amy C. Dwyer
Robert Keynton
Adel Elmaghraby
Ayman El-Baz
10 Overview of Deep Learning Algorithms Applied to Medical Images
225(14)
Behnaz Abdollahi
Ayman El-Baz
Hermann B. Frieboes
11 Big Data in Prostate Cancer
239(24)
Islam Reda
Ashraf Khalil
Mohammed Ghazal
Ahmed Shalaby
Mohammed Elmogy
Ahmed Aboelfetouh
Ali Mahmoud
Mohamed Abou El-Ghar
Ayman El-Baz
12 Automatic Detection of Early Signs of Diabetic Retinopathy Based on Feature Fusion from OCT and OCTA Scans
263(18)
Nabila Eladawi
Ahmed ElTanboly
Mohammed Elmogy
Mohammed Ghazal
Ali Mahmoud
Ahmed Aboelfetouh
Alaa Riad
Magdi El-Azab
Jasjit S. Suri
Guruprasad Giridharan
Ayman El-Baz
13 Computer Aided Diagnosis System for Early Detection of Diabetic Retinopathy Using OCT Images
281(20)
Ahmed ElTanboly
Ahmed Shalaby
Ali Mahmoud
Mohammed Ghazal
Andrew Switala
Fatma Taher
Jasjit S. Suri
Robert Keynton
Ayman El-Baz
Index 301
Ayman El-Baz, Ph.D., Professor, University Scholar, and Chair of Bioengineering Department at the University of Louisville, KY. Dr. El-Baz earned his bachelor's and master degrees in Electrical Engineering in 1997 and 2001. He earned his doctoral degrees in electrical engineering from the University of Louisville in 2006. In 2009, Dr. El-Baz was named a Coulter Fellow for his contribution in the biomedical translational research. Dr El-Baz has 15 years of hands-on experience in the fields of bio-imaging modeling and non-invasive computer-assisted diagnosis systems. He has authored or coauthored more than 300 technical articles (87 journals, 9 books, 39 book chapters, 144 refereed-conference papers, 74 abstracts published in proceedings, and 12 US patents).



Jasjit S. Suri, an innovator, a visionary, a scientist, and an internationally-known world leader, has spent about 30 years in the field of biomedical engineering/sciences, software and hardware engineering and its management. During his career in biomedical industry/imaging, he has had an upstream growth and responsibilities from scientific Engineer, Scientist, Manager, Director R&D, Sr. Director, Vice President, Chief Technology Officer (CTO), CEO level positions in industries like Siemens Medical Systems, Philips Medical Systems, Fisher Imaging Corporation and Eigen Inc., Global Biomedical Technologies Inc., AtheroPoint, respectively and managed unto a maximum of 50 to 100 people. He is currently the Chairman of Global Biomedical Technologies, Inc., CA, USA.