Muutke küpsiste eelistusi

E-raamat: Big Data Platforms and Applications: Case Studies, Methods, Techniques, and Performance Evaluation

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 184,63 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a review of advanced topics relating to the theory, research, analysis and implementation in the context of big data platforms and their applications, with a focus on methods, techniques, and performance evaluation.

The explosive growth in the volume, speed, and variety of data being produced every day requires a continuous increase in the processing speeds of servers and of entire network infrastructures, as well as new resource management models. This poses significant challenges (and provides striking development opportunities) for data intensive and high-performance computing, i.e., how to efficiently turn extremely large datasets into valuable information and meaningful knowledge.

The task of context data management is further complicated by the variety of sources such data derives from, resulting in different data formats, with varying storage, transformation, delivery, and archiving requirements. At the same time rapid responses are needed for real-time applications. With the emergence of cloud infrastructures, achieving highly scalable data management in such contexts is a critical problem, as the overall application performance is highly dependent on the properties of the data management service.


1. Data Center for Smart Issues: Energy and Sustainability Issue.- 2 Apache Spark for Digitalization, Analysis and Optimization of Discrete Manufacturing Process.-
3. An Empirica Study on Teleworking among Slovakia's Office-Based Academics.-
4. DSS for Pro-Active Flood Management of Water Reservoir Systems.-
5. exhiSTORY: Small Self-Organizing Exhibits.-
6. IoT Cloud Design Patterns.-
7. Cloud-based mHealth Streaming for IoT Processing.-
8. A System for Monitoring Water Quality Parameters in Rivers: Challenges and Solutions.
Dr. Florin Pop is a Professor at the Department of Computer Science and Engineering at the University Politehnica of Bucharest, Romania and a Senior Researcher (1st Degree) at the Department of Intelligent and Distributed Data Intensive Systems at the National Institute for Research and Development in Informatics, Bucharest, Romania.









Dr. Gabriel Neagu is a Senior Researcher (1st Degree) at the Department of Intelligent and Distributed Data Intensive Systems at the National Institute for Research and Development in Informatics, Bucharest, Romania.