Muutke küpsiste eelistusi

E-raamat: Big Digital Forensic Data: Volume 2: Quick Analysis for Evidence and Intelligence

  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides an in-depth understanding of big data challenges to digital forensic investigations, also known as big digital forensic data. It also develops the basis of using data mining in big forensic data analysis, including data reduction, knowledge management, intelligence, and data mining principles to achieve faster analysis in digital forensic investigations. By collecting and assembling a corpus of test data from a range of devices in the real world, it outlines a process of big digital forensic data analysis for evidence and intelligence. It includes the results of experiments on vast volumes of real digital forensic data. The book is a valuable resource for digital forensic practitioners, researchers in big data, cyber threat hunting and intelligence, data mining and other related areas.

1 Introduction
1(4)
References
4(1)
2 Quick Analysis of Digital Forensic Data
5(24)
2.1 Digital Forensic Quick Analysis Methodology
7(9)
2.1.1 Physical Examination
9(1)
2.1.2 Quick Analysis
10(6)
2.2 Quick Analysis of Test Data
16(5)
2.3 Quick Analysis of Real World Digital Forensic Subsets
21(5)
2.3.1 Quick Analysis with EnCase on Real World Data
21(2)
2.3.2 Processing with NUIX on Real World Data
23(3)
2.4 Discussion
26(1)
2.5 Summary
26(3)
References
27(2)
3 Digital Forensic Data and Intelligence
29(20)
3.1 Intelligence Analysis and Digital Intelligence
31(4)
3.2 Digital Forensic Intelligence
35(1)
3.3 Mobile Phone and Portable Storage Growth 2003--2018
36(4)
3.3.1 South Australia Police---Electronic Evidence 2000--2015
38(1)
3.3.2 FBI Regional Computer Forensic Labs 2006--2013
38(2)
3.4 IoT Devices
40(2)
3.5 Discussion
42(2)
3.6 Conclusion
44(1)
3.7 Summary
45(4)
References
45(4)
4 Data Reduction of Mobile Device Extracts
49(18)
4.1 Digital Forensic Intelligence Analysis
50(2)
4.2 Mobile Phone Extracts
52(4)
4.2.1 MSAB XRY 6.12.1
53(1)
4.2.2 Oxygen Forensic Suite 6.4.0.67
53(1)
4.2.3 Cellebrite UFED 3.9.2.4
54(1)
4.2.4 Guidance Software EnCase 7.09.04
54(1)
4.2.5 Paraben Device Seizure 6.66
55(1)
4.2.6 Internet Evidence Finder (IEF) 6.4.2.0070
55(1)
4.2.7 Summary of Mobile Phone Exports
56(1)
4.3 Digital Forensic Intelligence Analysis of Test Data
56(2)
4.4 Review of South Australia Police Data
58(4)
4.4.1 Data Volume of South Australia Police XRY Extracts
59(1)
4.4.2 Extract Time from South Australia Police XRY Data
60(1)
4.4.3 Summary of South Australia Police Data
61(1)
4.5 Discussion
62(2)
4.6 Summary
64(3)
References
65(2)
5 Digital Forensic Data and Open Source Intelligence (DFINT+OSINT)
67(16)
5.1 The Role of Intelligence
68(4)
5.1.1 Intelligence-Led Policing (ILP)
68(1)
5.1.2 Open Source Intelligence
69(2)
5.1.3 Digital Forensic Intelligence + OSINT
71(1)
5.2 DFINT+OSINT Method
72(2)
5.3 Results: Digital Intelligence and OSINT from M57 Test Data
74(3)
5.4 Applying DFINT+OSINT to Real World Data
77(2)
5.5 Discussion
79(1)
5.6 Summary
80(3)
References
80(3)
6 Summary
83(3)
6.1 Conclusion
84(2)
References 86
Dr. Darren Quick is a Senior Intelligence Technologist with the Australian Department of Home Affairs and a former Digital Forensic Investigator with the Australian Border Force, and previously an Electronic Evidence Specialist with the South Australia Police. He has undertaken over 650 digital forensic investigations involving many thousands of digital evidence items. In 2012 Darren was awarded membership of the Golden Key International Honour Society, in 2014 he received a Highly Commended award from the Australian National Institute of Forensic Science, and in 2015 received the Publication of the Year award from the Australian Institute of Professional Intelligence Officers.





Dr. Kim-Kwang Raymond Choo holds the Cloud Technology Endowed Professorship at The University of Texas at San Antonio, is an adjunct associate professor at the University of South Australia, a fellow of the Australian Computer Society, and a senior member of IEEE. He and his team wonthe Digital Forensics Research Challenge 2015 organized by Germany's University of Erlangen-Nuremberg, and he is the recipient of various awards including the ESORICS 2015 Best Paper Award, the 2014 Highly Commended Award from the Australia New Zealand Policing Advisory Agency, Fulbright Scholarship in 2009, the 2008 Australia Day Achievement Medallion, and the British Computer Society's Wilkes Award in 2008.