Muutke küpsiste eelistusi

E-raamat: Binary Data Analysis of Randomized Clinical Trials with Noncompliance

(San Diego State University)
  • Formaat: EPUB+DRM
  • Sari: Statistics in Practice
  • Ilmumisaeg: 31-Mar-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119993902
  • Formaat - EPUB+DRM
  • Hind: 104,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Sari: Statistics in Practice
  • Ilmumisaeg: 31-Mar-2011
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119993902

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

It is quite common in a randomized clinical trial (RCT) to encounter patients who do not comply with their assigned treatment. Since noncompliance often occurs non-randomly, the commonly-used approaches, including both the as-treated (AT) and as-protocol (AP) analysis, and the intent-to-treat (ITT) (or as-randomized) analysis, are all well known to possibly produce a biased inference of the treatment efficacy. This book provides a systematic and organized approach to analyzing data for RCTs with noncompliance under the most frequently-encountered situations. These include parallel sampling, stratified sampling, cluster sampling, parallel sampling with subsequent missing outcomes, and a series of dependent Bernoulli sampling for repeated measurements. The author provides a comprehensive approach by using contingency tables to illustrate the latent probability structure of observed data. Using real-life examples, computer-simulated data and exercises in each chapter, the book illustrates the underlying theory in an accessible, and easy to understand way.

Key features:





Consort-flow diagrams and numerical examples are used to illustrate the bias of commonly used approaches, such as, AT analysis, AP analysis and ITT analysis for a RCT with noncompliance. Real-life examples are used throughout the book to explain the practical usefulness of test procedures and estimators. Each chapter is self-contained, allowing the book to be used as a reference source. Includes SAS programs which can be easily modified in calculating the required sample size.

Biostatisticians, clinicians, researchers and data analysts working in pharmaceutical industries will benefit from this book. This text can also be used as supplemental material for a course focusing on clinical statistics or experimental trials in epidemiology, psychology and sociology.

Arvustused

"The book would be well-suited as a reference for biostatisticians, clinicians, researchers, and data analysts - and it would be useful as supplemental reading for academic courses in a variety of related fields." (Book News, 1 August 2011)

Preface xiii
About the Author xvii
1 Randomized clinical trials with noncompliance: issues, definitions and problems of commonly used analyses
1(20)
1.1 Randomized encouragement design (RED)
4(2)
1.2 Randomized consent designs
6(3)
1.2.1 Single-consent randomized design (SCRD)
7(1)
1.2.2 Double-consent randomized design (DCRD)
8(1)
1.3 Treatment efficacy versus programmatic effectiveness
9(1)
1.4 Definitions of commonly used terms and assumptions
10(3)
1.5 Most commonly used analyses for a RCT with noncompliance
13(8)
Exercises
20(1)
2 Randomized clinical trials with noncompliance under parallel groups design
21(70)
2.1 Testing superiority
26(9)
2.2 Testing noninferiority
35(6)
2.2.1 Using the difference in proportions
35(1)
2.2.2 Using the ratio of proportions
36(2)
2.2.3 Using the odds ratio of proportions
38(3)
2.3 Testing equivalence
41(2)
2.3.1 Using the difference in proportions
41(1)
2.3.2 Using the ratio of proportions
42(1)
2.3.3 Using the odds ratio of proportions
43(1)
2.4 Interval estimation
43(8)
2.4.1 Estimation of the proportion difference
44(3)
2.4.2 Estimation of the proportion ratio
47(2)
2.4.3 Estimation of the odds ratio
49(2)
2.5 Sample size determination
51(14)
2.5.1 Sample size calculation for testing superiority
52(3)
2.5.2 Sample size calculation for testing noninferiority
55(3)
2.5.3 Sample size calculation for testing equivalence
58(7)
2.6 Risk model-based approach
65(26)
2.6.1 Constant risk additive model
66(2)
2.6.2 Constant risk multiplicative model
68(3)
2.6.3 Generalized risk additive model
71(2)
2.6.4 Generalized risk multiplicative model
73(2)
Exercises
75(13)
Appendix
88(3)
3 Randomized clinical trials with noncompliance in stratified sampling
91(46)
3.1 Testing superiority
96(4)
3.2 Testing noninferiority
100(5)
3.2.1 Using the difference in proportions
100(2)
3.2.2 Using the ratio of proportions
102(2)
3.2.3 Using the odds ratio of proportions
104(1)
3.3 Testing equivalence
105(3)
3.3.1 Using the difference in proportions
106(1)
3.3.2 Using the ratio of proportions
107(1)
3.3.3 Using the odds ratio of proportions
107(1)
3.4 Interval estimation
108(11)
3.4.1 Estimation of the proportion difference
108(5)
3.4.2 Estimation of the proportion ratio
113(2)
3.4.3 Estimation of the odds ratio
115(4)
3.5 Test homogeneity of index in large strata
119(18)
3.5.1 Testing homogeneity of the proportion difference
120(2)
3.5.2 Testing homogeneity of the proportion ratio
122(3)
3.5.3 Test homogeneity of the odds ratio
125(3)
Exercises
128(5)
Appendix
133(4)
4 Randomized clinical trials with noncompliance under cluster sampling
137(48)
4.1 Testing superiority
143(3)
4.2 Testing noninferiority
146(5)
4.2.1 Using the difference in proportions
147(1)
4.2.2 Using the ratio of proportions
148(1)
4.2.3 Using the odds ratio of proportions
149(2)
4.3 Testing equivalence
151(2)
4.3.1 Using the difference in proportions
151(1)
4.3.2 Using the ratio of proportions
152(1)
4.3.3 Using the odds ratio of proportions
152(1)
4.4 Interval estimation
153(5)
4.4.1 Estimation of the proportion difference
153(1)
4.4.2 Estimation of the proportion ratio
154(3)
4.4.3 Estimation of the odds ratio
157(1)
4.5 Sample size determination
158(14)
4.5.1 Sample size calculation for testing superiority
159(5)
4.5.2 Sample size calculation for testing noninferiority
164(6)
4.5.3 Sample size calculation for testing equivalence
170(2)
4.6 An alternative randomization-based approach
172(13)
Exercises
176(5)
Appendix
181(4)
5 Randomized clinical trials with both noncompliance and subsequent missing outcomes
185(62)
5.1 Testing superiority
193(3)
5.2 Testing noninferiority
196(4)
5.2.1 Using the difference in proportions
196(1)
5.2.2 Using the ratio of proportions
197(1)
5.2.3 Using the odds ratio of proportions
198(2)
5.3 Testing equivalence
200(2)
5.3.1 Using the difference in proportions
200(1)
5.3.2 Using the ratio of proportions
201(1)
5.3.3 Using the odds ratio of proportions
201(1)
5.4 Interval estimation
202(4)
5.4.1 Estimation of the proportion difference
202(1)
5.4.2 Estimation of the proportion ratio
203(2)
5.4.3 Estimation of the odds ratio
205(1)
5.5 Sample size determination
206(15)
5.5.1 Sample size calculation for testing superiority
207(5)
5.5.2 Sample size calculation for testing noninferiority
212(1)
5.5.3 Sample size calculation for testing equivalence
213(8)
5.6 An alternative missing at random (MAR) model
221(26)
5.6.1 Estimation of the proportion difference
226(3)
5.6.2 Estimation of the proportion ratio
229(1)
5.6.3 Estimation of the odds ratio
230(3)
Exercises
233(5)
Appendix
238(9)
6 Randomized clinical trials with noncompliance in repeated binary measurements
247(42)
6.1 Testing superiority
253(3)
6.2 Testing noninferiority
256(4)
6.2.1 Using the difference in proportions
256(1)
6.2.2 Using the ratio of proportions
257(3)
6.3 Testing equivalence
260(1)
6.3.1 Using the difference in proportions
260(1)
6.3.2 Using the ratio of proportions
260(1)
6.4 Interval estimation
261(12)
6.4.1 Estimation of the proportion difference
261(7)
6.4.2 Estimation of the proportion ratio
268(5)
6.5 Sample size determination
273(16)
6.5.1 Sample size calculation for testing superiority
273(2)
6.5.2 Sample size calculation for testing noninferiority
275(3)
6.5.3 Sample size calculation for testing equivalence
278(3)
Exercises
281(8)
References 289(14)
Index 303
Kung-Jong Lui, Department of Mathematics and Statistics, San Diego State University, USA.