Muutke küpsiste eelistusi

E-raamat: Binary Periodic Signals and Flows

  • Formaat: 251 pages
  • Ilmumisaeg: 01-Jul-2016
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781634849586
  • Formaat - PDF+DRM
  • Hind: 284,05 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 251 pages
  • Ilmumisaeg: 01-Jul-2016
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781634849586

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The signals from digital electrical engineering are modeled by discrete time and real time functions, whose values are binary n-tuples and which are also called signals. The asynchronous circuits, representing the devices that work with such signals, are modeled by Boolean autonomous deterministic regular asynchronous systems, shortly by asynchronous flows. The attribute 'Boolean' vaguely refers to the binary Boole algebra; 'autonomous' means that there is no input; 'deterministic' means the existence of a unique state function; and 'regular' indicates the existence of a Boolean function that iterates its coordinates independently on each other (i.e. asynchronously). Strong analogies exist with the real, usual dynamical systems. The purpose of this research monograph is to study the periodicity of the signals and of their values, as well as the periodicity of the asynchronous flows. The monograph addresses systems theory and computer science that apply to researchers, but it is also interesting to those that study periodicity itself. From this last perspective, the signals may be thought of as functions with many finite values. At the same time, the asynchronous flows may be considered as special cases of variable structure systems. The bibliography consists of works of real, dynamical systems that produce analogies.
1 Preliminaries
1(16)
1 The Definition of the Signals
1(2)
2 Left and Right Limits
3(1)
3 Initial and Final Values, Initial and Final Time
4(3)
4 The Forgetful Function
7(1)
5 Orbits, Omega Limit Sets and Support Sets
8(4)
6 The Image of a Signal via a Function
12(5)
2 The Main Definitions on Periodicity
17(8)
1 Eventually Periodic Points
17(3)
2 Eventually Periodic Signals
20(1)
3 Periodic Points
21(1)
4 Periodic Signals
22(3)
3 Eventually Constant Signals
25(20)
1 The First Group of Eventual Constancy Properties
25(1)
2 Eventual Constancy
26(1)
3 The Second Group of Eventual Constancy Properties
27(6)
4 The Third Group of Eventual Constancy Properties
33(6)
5 The Third Group of Eventual Constancy Properties, Version
39(1)
6 The Fourth Group of Eventual Constancy Properties
40(2)
7 Discrete Time vs Real Time
42(1)
8 Discussion
42(3)
4 Constant Signals
45(20)
1 The First Group of Constancy Properties
45(1)
2 The Second Group of Constancy Properties
46(5)
3 The Third Group of Constancy Properties
51(8)
4 The Fourth Group of Constancy Properties
59(2)
5 Discrete Time vs Real Time
61(1)
6 Discussion
61(4)
5 Eventually Periodic Points
65(22)
1 Equivalent Properties with the Eventual Periodicity of a Point
65(3)
2 Discussion
68(1)
3 The Accessibility of the Eventually Periodic Points
69(1)
4 The Limit of Periodicity
69(2)
5 A Property of Eventual Constancy
71(5)
6 Discrete Time vs Real Time
76(1)
7 Support Sets vs Sets of Periods
77(1)
8 Sums, Differences and Multiples of Periods
78(1)
9 The Set of the Periods
79(2)
10 Necessity Conditions of Eventual Periodicity
81(2)
11 Sufficiency Conditions of Eventual Periodicity
83(1)
12 A Special Case
84(1)
13 Eventually Periodic Points vs Eventually Constant Signals
85(2)
6 Eventually Periodic Signals
87(22)
1 The First Group of Eventual Periodicity Properties
87(3)
2 The Second Group of Eventual Periodicity Properties
90(3)
3 The Accessibility of the Omega Limit Set
93(1)
4 The Limit of Periodicity
94(2)
5 A Property of Eventual Constancy
96(2)
6 Discussion on Eventual Constancy
98(1)
7 Discrete Time vs Real Time
98(2)
8 Sums, Differences and Multiples of Periods
100(1)
9 The Set of the Periods
101(1)
10 Necessity Conditions of Eventual Periodicity
102(1)
11 Sufficiency Conditions of Eventual Periodicity
103(1)
12 A Special Case
104(1)
13 Changing the Order of the Quantifiers
105(2)
14 The Hypothesis P
107(2)
7 Periodic Points
109(24)
1 Properties which Are Equivalent to the Periodicity of a Point
109(3)
2 Discussion
112(1)
3 The Accessibility of the Periodic Points
113(1)
4 The Limit of Periodicity
113(4)
5 A Property of Constancy
117(1)
6 Discrete Time vs Real Time
118(1)
7 Support Sets vs Sets of Periods
119(1)
8 Sums, Differences and Multiples of Periods
119(2)
9 The Set of the Periods
121(1)
10 Necessity Conditions of Periodicity
121(3)
11 Sufficiency Conditions of Periodicity
124(2)
12 A Special Case
126(2)
13 Periodic Points vs Eventually Periodic Points
128(2)
14 Further Research
130(3)
8 Periodic Signals
133(22)
1 The First Group of Periodicity Properties
134(2)
2 The Second Group of Periodicity Properties
136(2)
3 The Accessibility of the Orbit
138(1)
4 The Limit of Periodicity
138(4)
5 A property of Constancy
142(1)
6 Discussion on Constancy
143(1)
7 Discrete Time vs Real Time
144(2)
8 Sums, Differences and Multiples of Periods
146(1)
9 The Set of the Periods
147(1)
10 Necessity Conditions of Periodicity
147(1)
11 Sufficiency Conditions of Periodicity
148(2)
12 A Special Case
150(1)
13 Periodicity vs Eventual Periodicity
151(1)
14 Changing the Order of the Quantifiers
152(1)
15 Other Issues
153(2)
9 Examples
155(4)
1 Discrete Time, Periodic Points
155(2)
2 Real Time, Periodic Points
157(2)
10 Computation Functions
159(14)
1 The Definition of the Computation Functions
159(1)
2 Discussion
160(1)
3 Eventual Periodicity and Periodicity
161(2)
4 The Bounds of the Initial Time and of the Limit of Periodicity
163(2)
5 The Forgetful Function
165(2)
6 Progressiveness
167(2)
7 Progressive Periodic Computation Functions
169(4)
11 Flows
173(14)
1 Flows
173(3)
2 The Defining Equations of the Flows
176(2)
3 Consistency, Composition and Causality
178(3)
4 Equivalent Progressive Computation Functions
181(6)
12 A Wider Point of View: Control and Systems
187(6)
1 Control
187(1)
2 Systems
188(2)
3 Discussion
190(3)
13 Eventually Constant Flows
193(6)
1 Generic Eventual Constancy Properties
193(1)
2 Specific Eventual Constancy Properties
194(1)
3 Eventually Fixed Points
195(1)
4 Discrete Time vs Real Time
196(1)
5 A Property of Eventual Constancy
196(3)
14 Constant Flows
199(6)
1 Generic Constancy Properties
199(1)
2 Specific Constancy Properties
200(2)
3 Fixed Points
202(1)
4 Discrete Time vs Real Time
202(1)
5 Properties of Constancy
202(3)
15 The Periodicity of the Flows
205(16)
1 Eventually Periodic Values of the Flows
205(2)
2 Eventually Periodic Flows
207(2)
3 Double Eventual Periodicity
209(3)
4 Periodic Values of the Flows
212(1)
5 Periodic Flows
213(2)
6 Double Periodicity
215(6)
Notations 221(2)
Lemmas 223(12)
About the Author 235(2)
Index 237