Muutke küpsiste eelistusi

E-raamat: Bioenergy: Principles and Applications

, (University of Hawaii - Manoa)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 15-Sep-2016
  • Kirjastus: Wiley-Blackwell
  • Keel: eng
  • ISBN-13: 9781118568361
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 107,38 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 15-Sep-2016
  • Kirjastus: Wiley-Blackwell
  • Keel: eng
  • ISBN-13: 9781118568361
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

BIOENERGY: PRINCIPLES AND APPLICATIONS BIOENERGY: PRINCIPLES AND APPLICATIONS

With growing concerns over climate change and energy insecurity coupled with dwindling reserves of fossil energy resources, there is a growing search for alternative, renewable energy resources. Energy derived from renewable bioresources such as biomass (energy crops, agri- and forest residues, algae, and biowastes) has received significant attention in recent years. With the growing interest in bioenergy, there has been increasing demand for a broad-ranging, introductory textbook that provides an essential overview of this very subject to students in the field. Bioenergy: Principles and Applications offers an invaluable introduction to both fundamental and applied aspects of bioenergy feedstocks and their processing, as well as lifecycle and techno-economic analyses, and policies as applied to bioenergy.



Bioenergy: Principles and Applications provides readers with foundational information on first-, second-, and third-generation bioenergy, ranging from plant structure, carbohydrate chemistry, mass and energy balance, thermodynamics, and reaction kinetics to feedstock production, logistics, conversion technologies, biorefinery, lifecycle and techno-economic analyses, and government policies. This textbook gives students and professionals an incomparable overview of the rapidly growing field of bioenergy.

Bioenergy: Principles and Applications will be an essential resource for students, engineers, researchers, and industry personnel interested in, and working in, the bioenergy field.
List of Contributors
xix
Preface xxiii
Acknowledgments xxv
About the Companion Website xxvii
SECTION I BIOENERGY FUNDAMENTALS
1(106)
1 Introduction to Bioenergy
3(16)
Samir Kumar Khanal
Yebo Li
1.1 Energy
3(2)
1.2 Non-renewable Energy
5(5)
1.3 Renewable Energy
10(1)
1.4 Why Renewable Energy?
11(2)
1.4.1 Energy Insecurity
11(1)
1.4.2 Depletion of Energy Resources Reserves
12(1)
1.4.3 Concern about Climate Change
13(1)
1.5 Bioenergy
13(6)
1.5.1 Current Status of Bioenergy Production
14(1)
1.5.2 Merits of Bioenergy
15(1)
1.5.3 Demerits of Bioenergy
16(1)
References
17(1)
Exercise Problems
18(1)
2 Units and Conversions
19(14)
Samir Kumar Khanal
2.1 Introduction
19(1)
2.2 Units of Measurement
19(2)
2.3 Useful Units and Conversions
21(4)
2.4 Energy and Heat
25(4)
2.4.1 Power
26(1)
2.4.2 Heating Value
27(1)
2.4.3 Heat Capacity
28(1)
2.5 Volume-Mass Relationship
29(1)
2.6 Ideal Gas Law
29(1)
2.7 Henry's Law
30(3)
References and Further Reading
32(1)
Exercise Problems
32(1)
3 Mass and Energy Balances
33(9)
Devin Takara
Samir Kumar Khanal
3.1 Introduction
33(1)
3.2 Mass Balances
33(2)
3.3 Enthalpy
35(1)
3.4 Energy Balances
36(6)
References and Further Reading
39(1)
Exercise Problems
39(3)
4 Thermodynamics and Kinetics of Basic Chemical Reactions
42(8)
Devin Takara
Samir Kumar Khanal
4.1 Introduction
42(1)
4.2 Reaction Thermodynamics
43(3)
4.3 Reaction Kinetics
46(4)
References and Further Reading
48(1)
Exercise Problems
48(2)
5 Organic and Carbohydrate Chemistry
50(21)
Xiaolan Luo
Yebo Li
5.1 Introduction
50(1)
5.2 Structural Formulas and Classification of Organic Compounds
51(1)
5.3 Aliphatic Compounds
52(9)
5.3.1 Alkanes and Cycloalkanes
52(2)
5.3.2 Alkenes and Alkynes
54(2)
5.3.3 Alcohols and Ethers
56(1)
5.3.4 Aldehydes and Ketones
57(1)
5.3.5 Carboxylic Acids and Derivatives
58(3)
5.3.6 Other Aliphatic Compounds
61(1)
5.4 Aromatic Compounds
61(1)
5.5 Heterocyclic Compounds
62(1)
5.6 Carbohydrates
63(3)
5.6.1 Monosaccharides
63(2)
5.6.2 Oligosaccharides
65(1)
5.6.3 Polysaccharides
65(1)
5.7 Proteins and Lipids
66(5)
5.7.1 Proteins
66(2)
5.7.2 Lipids
68(1)
References and Further Reading
69(1)
Exercise Problems
70(1)
6 Plant Structural Chemistry
71(17)
Samir Kumar Khanal
Saoharit Nitayavardhana
Rakshit Devappa
6.1 Introduction
71(1)
6.2 Carbohydrates and Their Classification
72(1)
6.2.1 Monosaccharides
72(1)
6.2.2 Oligosaccharides
73(1)
6.2.3 Polysaccharides
73(1)
6.3 Main Constituents of Plant Biomass
73(7)
6.3.1 Structural Carbohydrates
75(2)
6.3.2 Lignin
77(3)
6.4 Plant Cell Wall Architecture
80(8)
6.4.1 Primary Cell Wall
80(4)
6.4.2 Secondary Cell Wall
84(1)
References
85(1)
Exercise Problems
86(2)
7 Microbial Metabolisms
88(19)
Ami M. Varman
Lian He
Yinjie J. Tang
7.1 Introduction
88(1)
7.2 Carbon Metabolisms
89(4)
7.3 Metabolic Models
93(14)
7.3.1 Microbial Growth in Batch Culture
93(2)
7.3.2 Monod Equation for Microbial Growth
95(1)
7.3.3 Inhibition and Multiple Substrate Models
96(1)
7.3.4 Monod-Based Kinetic Model in Batch Bioreactors
97(3)
7.3.5 Monod Model Coupled with Mass Transfer
100(1)
7.3.6 Mass Balances and Reactions in Fed-Batch and Continuous-Stirred Tank Bioreactors
101(1)
7.3.7 Elemental Balance and Stoichiometric Models
102(2)
References
104(1)
Exercise Problems
105(1)
Appendix 7.1 Code Useful for Example 7.2
105(2)
SECTION II BIOENERGY FEEDSTOCKS
107(92)
8 Starch-Based Feedstocks
109(18)
Xumeng Ge
Yebo Li
8.1 Introduction
109(1)
8.2 Corn
110(6)
8.2.1 Growth and Development of Corn
110(1)
8.2.2 Growing Degree Days for Corn Growth
111(1)
8.2.3 Cultivation Practices in Corn Production
112(2)
8.2.4 Harvesting and Storage of Corn
114(2)
8.3 Sweet Potato
116(4)
8.3.1 Growth and Development of Sweet Potato
117(1)
8.3.2 Cultivation Practices in Sweet Potato Production
117(2)
8.3.3 Harvesting and Storage of Sweet Potato
119(1)
8.4 Cassava
120(4)
8.4.1 Growth and Development of Cassava
120(1)
8.4.2 Cultivation Practices in Cassava Production
121(2)
8.4.3 Harvesting and Storage of Cassava
123(1)
8.5 Comparison of Composition, Yield, and Energy Potential of Corn, Sweet Potato, and Cassava
124(3)
References
125(1)
Exercise Problems
126(1)
9 Oilseed-Based Feedstocks
127(16)
Chengci Chen
Marisol Berti
9.1 Introduction
127(1)
9.2 Soybean
128(4)
9.2.1 Feedstock Production and Handling
128(3)
9.2.2 Nutrient and Water Use
131(1)
9.3 Rapeseed and Canola
132(3)
9.3.1 Feedstock Production and Handling
132(2)
9.3.2 Nutrient and Water Use
134(1)
9.4 Oil Palm
135(1)
9.4.1 Feedstock Production and Handling
135(1)
9.4.2 Nutrient and Water Use
136(1)
9.5 Jatropha
136(2)
9.5.1 Feedstock Production and Handling
136(1)
9.5.2 Nutrient and Water Use
137(1)
9.6 Camelina
138(1)
9.6.1 Feedstock Production and Handling
138(1)
9.6.2 Nutrient and Water Use
139(1)
9.7 Yield and Oil Content of Major Oilseed Feedstocks
139(4)
References
140(2)
Exercise Problems
142(1)
10 Lignocellulose-Based Feedstocks
143(27)
Sudhagar Mani
10.1 Introduction
143(1)
10.2 Feedstock Availability and Production
144(7)
10.2.1 Crop Residues
144(3)
10.2.2 Dedicated Energy Crops
147(2)
10.2.3 Forest Biomass
149(2)
10.3 Feedstock Logistics
151(19)
10.3.1 Harvesting and Collection of Crop Residues and Energy Crops
151(9)
10.3.2 Harvesting of Forest Biomass
160(4)
10.3.3 Transportation
164(1)
10.3.4 Storage
165(2)
References
167(1)
Exercise Problems
168(2)
11 Algae-Based Feedstocks
170(29)
Xumeng Ge
Johnathon P. Sheets
Yebo Li
Sudhagar Mani
11.1 Introduction
170(1)
11.2 Algae Classification, Cell Structure, and Characteristics
171(1)
11.3 Mechanism of Algal Growth
172(2)
11.4 Algal Growth Conditions
174(2)
11.4.1 Light
174(1)
11.4.2 CO2 Concentration
175(1)
11.4.3 Temperature, pH, and Salinity
175(1)
11.4.4 Nutrients
176(1)
11.5 Steps in Algal-Biodiesel Production
176(23)
11.5.1 Algal Cultivation
178(5)
11.5.2 Harvesting
183(7)
11.5.3 Drying
190(2)
11.5.4 Lipid Extraction
192(3)
References
195(1)
Exercise Problems
196(3)
SECTION III BIOLOGICAL CONVERSION TECHNOLOGIES
199(186)
12 Pretreatment of Lignocellulosic Feedstocks
201(23)
Chang Geun Yoo
Xuejun Pan
12.1 Introduction
201(1)
12.2 What Does Pretreatment Do?
202(3)
12.3 Physical Pretreatment
205(2)
12.4 Thermochemical Pretreatment
207(9)
12.4.1 Acid Pretreatment
207(2)
12.4.2 Alkaline Pretreatment
209(4)
12.4.3 Organosolv Pretreatment
213(1)
12.4.4 Sulfite-Based Pretreatment
213(2)
12.4.5 The Combined Severity (CS) Factor
215(1)
12.5 Other Pretreatments
216(3)
12.5.1 Cellulose Solvent-Based Pretreatment
216(1)
12.5.2 Biological Pretreatment
217(1)
12.5.3 Ultrasonic Pretreatment
218(1)
12.5.4 Microwave Pretreatment
218(1)
12.6 Co-products from Lignocellulosic Feedstock Pretreatment
219(5)
12.6.1 Hemicellulosic Sugars
219(1)
12.6.2 Furans (Furfural and HMF)
219(1)
12.6.3 Lignin
220(1)
References
220(1)
Exercise Problems
221(3)
13 Enzymatic Hydrolysis
224(26)
David Hodge
Wei Liao
13.1 Introduction
224(1)
13.2 Nomenclature and Classification of Hydrolases
225(1)
13.3 Enzyme Kinetics
226(14)
13.3.1 Fundamentals of Reaction Rate: Transition State Theory
227(1)
13.3.2 Reaction Rate and Reaction Orders
227(5)
13.3.3 Michaelis--Menten Kinetics
232(7)
13.3.4 Enzyme Inhibition
239(1)
13.4 Enzymatic Hydrolysis of Carbohydrates
240(10)
13.4.1 Carbohydrate Structure
240(1)
13.4.2 Starch Depolymerization
241(2)
13.4.3 Cellulose Hydrolysis
243(2)
13.4.4 Hemicellulose Hydrolysis
245(1)
13.4.5 Key Factors Affecting the Enzymatic Hydrolysis of Lignocellulosic Feedstocks
245(1)
References
246(1)
Exercise Problems
247(3)
14 Ethanol Fermentation
250(27)
Saoharit Nitayavardhana
Samir Kumar Khanal
14.1 Introduction
250(2)
14.2 Biochemical Pathway
252(11)
14.2.1 Hexose Fermentation
253(7)
14.2.2 Pentose Fermentation
260(3)
14.3 Byproducts Formation during Ethanol Fermentation
263(1)
14.4 Microbial Cultures
264(3)
14.4.1 Yeast Culture for Hexose Fermentation
265(1)
14.4.2 Microbial Culture for Pentose Fermentation
266(1)
14.5 Environmental Factors Affecting Ethanol Fermentation
267(1)
14.5.1 Nutrients
267(1)
14.5.2 PH
267(1)
14.5.3 Temperature
268(1)
14.5.4 Others
268(1)
14.6 Industrial Fuel-Grade Ethanol Production
268(9)
14.6.1 Seed Culture Preparation
269(1)
14.6.2 Industrial Ethanol Fermentation
270(2)
14.6.3 Ethanol Recovery
272(2)
References
274(1)
Exercise Problems
275(2)
15 Butanol Fermentation
277(19)
Victor Ujor
Thaddeus Chukwuemeka Ezeji
15.1 Introduction
277(2)
15.2 Butanol Fermentation
279(6)
15.2.1 Acetone-Butanol-Ethanol (ABE) Fermentation
279(1)
15.2.2 Biochemical Pathway
280(2)
15.2.3 Stoichiometry and Product Yield
282(2)
15.2.4 Microbiology
284(1)
15.3 Factors Affecting Butanol Fermentation
285(2)
15.3.1 pH
285(1)
15.3.2 Availability of Co-factors (NADH)
285(1)
15.3.3 Medium Composition
286(1)
15.3.4 Product Inhibition
287(1)
15.4 Substrates for Butanol Fermentation
287(1)
15.5 Advanced Butanol Fermentation Techniques and Downstream Processing
288(8)
15.5.1 Gas Stripping
288(1)
15.5.2 Vacuum Fermentation
289(1)
15.5.3 Liquid-Liquid Extraction
290(1)
15.5.4 Pervaporation
291(1)
References
292(2)
Exercise Problems
294(2)
16 Syngas Fermentation
296(17)
Mark R. Wilkins
Hasan K. Atiyeh
Samir Kumar Khanal
16.1 Introduction
296(1)
16.2 Stoichiometry
297(1)
16.3 Syngas-Fermenting Bacteria
298(5)
16.3.1 Biochemical Pathway
299(1)
16.3.2 Genetic Transformation of Syngas-Fermenting Bacteria
300(1)
16.3.3 Microbial Kinetics
301(2)
16.4 Factors Affecting Syngas Fermentation
303(5)
16.4.1 Medium Composition
303(1)
16.4.2 pH
303(1)
16.4.3 Temperature
303(1)
16.4.4 Mass Transfer
304(2)
16.4.5 Bioreactor Configurations
306(2)
16.5 Product Recovery
308(5)
References
309(2)
Exercise Problems
311(2)
17 Fundamentals of Anaerobic Digestion
313(25)
Samir Kumar Khanal
Yebo Li
17.1 Introduction
313(2)
17.2 Organic Conversion in an Anaerobic Process
315(5)
17.3 Stoichiometry of Methane Production
320(3)
17.4 Important Considerations in Anaerobic Digestion
323(8)
17.4.1 Temperature
323(2)
17.4.2 pH and Alkalinity
325(2)
17.4.3 Nutrients
327(1)
17.4.4 Toxic Materials and Inhibition
328(1)
17.4.5 Total Solids Content
329(1)
17.4.6 Volumetric Organic Loading Rate (VOLR)
330(1)
17.4.7 Hydraulic Retention Time (HRT) and Solids Retention Time (SRT)
330(1)
17.4.8 Start-up
331(1)
17.5 Anaerobic Digestion Model No. 1 (ADM1)
331(7)
References
334(2)
Exercise Problems
336(2)
18 Biogas Production and Applications
338(23)
Samir Kumar Khanal
Yebo Li
18.1 Introduction
338(1)
18.2 Anaerobic Digestion Systems
338(16)
18.2.1 Suspended Growth System
339(7)
18.2.2 Attached Growth System
346(3)
18.2.3 Solid-State Anaerobic Digestion System
349(2)
18.2.4 Household Digester
351(3)
18.3 Biogas Cleaning and Upgrading
354(3)
18.3.1 Physical Methods
354(1)
18.3.2 Chemical Methods
355(1)
18.3.3 Biological Methods
356(1)
18.4 Biogas Utilization
357(1)
18.5 Digestate
358(3)
References
358(1)
Exercise Problems
359(2)
19 Microbial Fuel Cells
361(24)
Hongjian Lin
Hong Liu
Jun Zhu
Venkataramana Gadhamshetty
19.1 Introduction
361(2)
19.2 How Does a Microbial Fuel Cell (MFC) Work?
363(2)
19.3 Electron Transfer Processes
365(5)
19.3.1 Mediated Electron Transfer
366(1)
19.3.2 Direct Electron Transfer (DET)
367(1)
19.3.3 Bacterial Nanowires
368(1)
19.3.4 Long-Range Extracellular Electron Transfer
369(1)
19.4 Electrical Power and Energy Generation
370(7)
19.4.1 Redox Reaction and Electrode Potential
370(2)
19.4.2 Electromotive Force and Cell Potential
372(1)
19.4.3 Electrical Power
373(2)
19.4.4 Coulombic and Energy Efficiency
375(2)
19.5 Design and Operation of an MFC
377(8)
19.5.1 MFC Configurations
377(2)
19.5.2 Separators
379(1)
19.5.3 Anode Materials and Catalysts
380(1)
19.5.4 Cathode Materials and Catalysts
380(1)
19.5.5 Substrates
381(1)
References
381(1)
Exercise Problems
382(3)
SECTION IV THERMAL CONVERSION TECHNOLOGIES
385(54)
20 Combustion for Heat and Power
387(20)
Sushil Adhikari
Avanti Kulkarni
Nourredine Abdoulmoumine
20.1 Introduction
387(2)
20.2 Fundamentals of Biomass Combustion
389(4)
20.2.1 Biomass Combustion Phases
389(1)
20.2.2 Biomass Combustion Reaction and Stoichiometry
390(3)
20.3 Biomass Properties and Preprocessing
393(2)
20.3.1 Biomass Properties
393(1)
20.3.2 Biomass Preprocessing
394(1)
20.4 Biomass Furnaces
395(2)
20.4.1 Fixed-Bed Furnaces
395(1)
20.4.2 Fluidized-Bed Furnaces
396(1)
20.5 Power Generation
397(5)
20.5.1 Carnot Cycle
398(1)
20.5.2 Rankine Cycle
399(2)
20.5.3 The Air-Standard Brayton Cycle
401(1)
20.5.4 Combined Gas Turbine and Steam Turbine Power Cycles
402(1)
20.6 Biomass Co-firing with Coal
402(2)
20.7 Environmental Impact and Emissions of Biomass Combustion
404(3)
References
405(1)
Exercise Problems
405(2)
21 Gasification
407(16)
Sushil Adhikari
Nourredine Abdoulmoumine
21.1 Introduction
407(1)
21.2 Fundamentals of Gasification
408(2)
21.2.1 Gasifying Agents
408(1)
21.2.2 Gasification Reactions
409(1)
21.3 Gasifiers
410(4)
21.3.1 Moving-Bed Gasifiers
410(1)
21.3.2 Fluidized-Bed Gasifiers
411(2)
21.3.3 Entrained-Flow Gasifiers
413(1)
21.4 Feedstock Preparation and Characterization
414(2)
21.4.1 Feedstock Preparation
414(1)
21.4.2 Feedstock Characterization
415(1)
21.5 Gasification Mass and Energy Balance
416(3)
21.5.1 Mass Balance
416(1)
21.5.2 Energy Balance
417(2)
21.6 Gas Cleanup
419(1)
21.7 Applications of Biomass Gasification
419(4)
References
421(1)
Exercise Problems
421(1)
Appendix
422(1)
22 Pyrolysis
423(16)
Manuel Garcia-Perez
22.1 Introduction
423(2)
22.2 Slow vs. Fast Pyrolysis
425(1)
22.2.1 Slow Pyrolysis
425(1)
22.2.2 Fast Pyrolysis
425(1)
22.3 Pyrolysis Reactions and Mechanisms
426(5)
22.3.1 Pyrolysis Reactions
426(2)
22.3.2 Reaction Mechanisms
428(3)
22.4 Single-Particle Models
431(1)
22.5 Bio-Oil
432(2)
22.6 Charcoal
434(1)
22.7 Bio-oil Refining
434(5)
References
437(1)
Exercise Problems
438(1)
SECTION V BIOBASED REFINERY
439(66)
23 Sugar-Based Biorefinery
441(12)
Samir Kumar Khanal
Saoharit Nitayavardhana
23.1 Introduction
441(1)
23.2 Stoichiometry
442(1)
23.3 Sugarcane Ethanol
443(3)
23.3.1 Ethanol Production Process
443(1)
23.3.2 Sugarcane-to-Ethanol Biorefinery
444(2)
23.4 Sweet Sorghum Ethanol
446(1)
23.5 Sugar Beet Ethanol
447(1)
23.6 Biochemicals and Biopolymers
448(5)
23.6.1 Lactic Acid
448(1)
23.6.2 Succinic Acid
449(1)
23.6.3 1,3-Propanediol
450(1)
23.6.4 3-Hydroxypropionic Acid
450(1)
References
450(1)
Exercise Problems
451(2)
24 Starch-Based Biorefinery
453(14)
Samir Kumar Khanal
Saoharit Nitayavardhana
24.1 Introduction
453(2)
24.2 Stoichiometry of Starch to Ethanol
455(9)
24.2.1 Corn-Based Ethanol Biorefinery
456(5)
24.2.2 Corn-to-Ethanol Plants and Sorghum-to-Ethanol Plants
461(1)
24.2.3 Cassava-Based Ethanol Biorefinery
461(3)
24.3 Integrated Farm-Scale Biorefinery
464(3)
References
465(1)
Exercise Problems
466(1)
25 Lignocellulose-Based Biorefinery
467(14)
Scott C. Geleynse
Michael Paice
Xiao Zhang
25.1 Introduction
467(1)
25.2 Cell Structure of Lignocellulosic Feedstocks
468(1)
25.3 Stoichiometry and Energy Content
468(4)
25.3.1 Stoichiometry
470(1)
25.3.2 Energy Content
471(1)
25.4 Lignocellulosic Biomass Conversion to Fuel
472(1)
25.5 Co-Products from Lignocellulose-Based Biorefinery
473(3)
25.5.1 Products from Lignin
474(1)
25.5.2 Products from Hemicellulose
475(1)
25.6 Industrial Lignocellulose-Based Biorefinery
476(5)
References
478(2)
Exercise Problems
480(1)
26 Lipid-Based Biorefinery
481(24)
B. Brian He
J. H. Van Gerpen
Matthew J. Morra
Armando G. McDonald
26.1 Introduction
481(2)
26.2 Lipid-Based Feedstocks
483(1)
26.2.1 Plant Oils
483(1)
26.2.2 Animal Fats
484(1)
26.2.3 Waste Cooking Oils
484(1)
26.3 Chemical Properties of Lipids
484(7)
26.3.1 Chemical Composition of Lipids
484(1)
26.3.2 Average Molecular Weight of Triglycerides
484(4)
26.3.3 Seed Oil Extraction
488(3)
26.4 Biodiesel from Lipids
491(7)
26.4.1 Biodiesel Production via Transesterification
491(4)
26.4.2 Parameters Affecting Biodiesel Production
495(2)
26.4.3 Quality of Biodiesel
497(1)
26.5 Lipid-Based Biorefinery
498(7)
26.5.1 High-Value Biobased Products from Seed Oils
498(1)
26.5.2 Seed Meals and Their Applications
499(1)
26.5.3 Utilization of Glycerol from Biodiesel Production
500(1)
References
501(1)
Exercise Problems
502(3)
SECTION VI BIOENERGY SYSTEM ANALYSIS
505(58)
27 Techno-Economic Assessment
507(14)
Ganti S. Murthy
27.1 Introduction
507(1)
27.2 What Is Techno-Economic Analysis?
508(1)
27.3 Basic Steps in TEA
509(8)
27.4 Tools, Software, and Data Sources for Performing TEA
517(4)
27.4.1 Tools Available for Performing TEA
517(1)
27.4.2 Procedure for TEA Using Commercial Software
517(1)
27.4.3 Data Sources for Performing TEA
518(1)
27.4.4 Process Optimization Using TEA
518(1)
References
518(1)
Exercise Problems
518(3)
28 Life-Cycle Assessment
521(23)
Ganti S. Murthy
28.1 Introduction
521(1)
28.2 What Is Life-Cycle Assessment (LCA)?
522(2)
28.3 Procedure for LCA
524(9)
28.3.1 Goal Definition and Scoping
524(2)
28.3.2 Life-Cycle Inventory
526(4)
28.3.3 Life-Cycle Impact Assessment
530(2)
28.3.4 Life-Cycle Interpretation
532(1)
28.4 Tools Available to Perform LCA
533(1)
28.5 Advanced Topics
533(11)
28.5.1 Sensitivity Analysis
533(1)
28.5.2 Process Optimization Using LCA
533(1)
28.5.3 Consequential LCA
533(6)
References
539(2)
Exercise Problems
541(3)
29 Government Policy and Standards For Bioenergy
544(19)
Sami Kumar Khanal
Gal Hochman
Ajay Shah
Jeffrey M. Bielicki
29.1 Overview of the Bioenergy Market
544(2)
29.2 Rationale for Government Intervention
546(4)
29.3 Government Intervention through Policy Tools
550(1)
29.4 Biofuels Policy Implementations: Existing Policy Instruments
550(9)
29.4.1 Tax Credit/Subsidy
551(1)
29.4.2 Carbon Tax
552(2)
29.4.3 Feed-In Tariff
554(1)
29.4.4 Biofuels Regulations and Standards
555(1)
29.4.5 Emissions Trading or "Cap-and-Trade"
556(1)
29.4.6 Flex-Fuel Vehicles
557(1)
29.4.7 Farm Policies
557(1)
29.4.8 Trade Policies
558(1)
29.4.9 Funding for Research and Development
558(1)
29.5 Implications of Biofuels Policies
559(4)
References
561(1)
Exercise Problems
561(2)
Index 563
YEBO LI is a Professor in the Department of Food, Agricultural, and Biological Engineering at the Ohio State University.

SAMIR KUMAR KHANAL is an Associate Professor in the Department of Molecular Biosciences and Bioengineering at the University of Hawaii at Manoa.