Muutke küpsiste eelistusi

E-raamat: Biofertilizers: Study and Impact

Edited by (National Center for Nanoscience and Technology (NCNST, Beijing)), Edited by (Aligarh Muslim University, Aligarh, India), Edited by , Edited by (University of Tehran (UT), Iran)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 02-Aug-2021
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119724988
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 232,12 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 02-Aug-2021
  • Kirjastus: Wiley-Scrivener
  • Keel: eng
  • ISBN-13: 9781119724988
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Great attention has been paid to reduce the use of conventional chemical fertilizers harming living beings through food chain supplements from the soil environment. Therefore, it is necessary to develop alternative sustainable fertilizers to enhance soil sustainability and agriculture productivity. Biofertilizers are the substance that contains microorganisms (bacteria, algae, and fungi) living or latent cells that can enrich the soil quality with nitrogen, phosphorous, potassium, organic matter, etc. They are a cost-effective, biodegradable, and renewable source of plant nutrients/supplements to improve the soil-health properties. Biofertilizers emerge as an attractive alternative to chemical fertilizers, and as a promising cost-effective technology for eco-friendly agriculture and a sustainable environment that holds microorganisms which enhance the soil nutrients’ solubility leading a raise in its fertility, stimulates crop growth and healthy food safety.

This book provides in-depth knowledge about history and fundamentals to advances biofertilizers, including latest reviews, challenges, and future perspectives. It covers fabrication approaches, and various types of biofertilizers and their applications in agriculture, environment, forestry and industrial sectors. Also, organic farming, quality control, quality assurance, food safety and case-studies of biofertilizers are briefly discussed. Biofertilizers' physical properties, affecting factors, impact, and industry profiles in the market are well addressed. This book is an essential guide for farmers, agrochemists, environmental engineers, scientists, students, and faculty who would like to understand the science behind the sustainable fertilizers, soil chemistry and agroecology.

Preface xxi
1 Biofertilizer Utilization in Forestry 1(38)
Wendy Ying Ying Liu
Ranjetta Poobathy
1.1 Introduction
2(1)
1.2 Mechanisms of Actions of Biofertilizers
3(10)
1.2.1 Facilitation of N Acquisition
3(2)
1.2.1.1 Mutualistic N2 Fixation
4(1)
1.2.1.2 Non-Symbiotic N2 Fixation
5(1)
1.2.2 Facilitation of P Acquisition
5(3)
1.2.2.1 Phosphate Solubilizing Microorganisms
6(1)
1.2.2.2 Mycorrhizas
7(1)
1.2.3 Potassium Solubilization
8(1)
1.2.4 Production of Siderophores
9(1)
1.2.5 Modulation of Phytohormones
10(2)
1.2.6 Phytoprotection
12(1)
1.3 Factors Influencing the Outcome of Forestry-Related Biofertilizer Applications
13(3)
1.4 Applications of Biofertilizers in Forestry
16(2)
1.5 Conclusion and Future Prospects
18(2)
References
20(19)
2 Impact of Biofertilizers on Horticultural Crops 39(66)
Clement Kiing Fook Wong
Chui-Yao Teh
2.1 Introduction
40(1)
2.2 Microbial Strains Used in Biofertilizers
41(1)
2.3 Impact of Biofertilizer Application on Horticultural Crops
41(34)
2.3.1 Increased Yield and Quality of Crops
41(8)
2.3.1.1 Vegetable Crops
44(2)
2.3.1.2 Fruit Crops
46(2)
2.3.1.3 Ornamental Plants
48(1)
2.3.2 Enhanced Nutritional Content of Produce
49(3)
2.3.2.1 Mineral-Biofortified Crops
49(1)
2.3.2.2 Enhanced Secondary Metabolites
50(1)
2.3.2.3 Improved Vitamin Content
51(1)
2.3.3 Improved Tolerance Against Biotic Stress
52(13)
2.3.3.1 Fungal and Bacterial Pathogens
52(4)
2.3.3.2 Viral Pathogens
56(2)
2.3.3.3 Insect Pests
58(3)
2.3.3.4 Nematodes
61(3)
2.3.3.5 Weeds
64(1)
2.3.4 Improved Tolerance Against Abiotic Stress
65(8)
2.3.4.1 Drought
66(2)
2.3.4.2 Salinity
68(2)
2.3.4.3 Heavy Metal
70(1)
2.3.4.4 Cold Stress
71(2)
2.3.4.5 Heat Stress
73(1)
2.3.5 Improved Vegetative Propagation Efficiency
73(35)
2.3.5.1 Propagation by Cuttings
73(1)
2.3.5.2 Grafting
74(1)
2.4 Future Perspectives and Challenges Ahead
75(4)
2.5 Conclusion
79(1)
References
79(26)
3 N2 Fixation in Biofertilizers 105(16)
Rekha Sharma
Sapna Nehra
Dinesh Kumar
3.1 Introduction
106(2)
3.2 Biofertilizers
108(1)
3.2.1 Origin
108(1)
3.3 Biofertilizer: Transporter Constituents
108(1)
3.4 Mechanism of Actions of Biofertilizers
109(1)
3.5 Biochemistry of Manufacture of Biofertilizer
109(1)
3.6 Benefits of Biofertilizer Over Biochemical Fertilizers
110(1)
3.7 Variances Among Organic and Biofertilizer
111(1)
3.8 Types of Biofertilizers
111(1)
3.9 Microorganisms Utilized to Make Biofertilizer
111(2)
3.10 Microorganism in Nitrogen Fixation
113(2)
3.10.1 Biofertilizers: Symbiotic N-Fixers
113(1)
3.10.2 Biofertilizers: Free Living N-Fixers
114(1)
3.10.3 Biofertilizers: Associative Symbiotic N-Fixers
114(1)
3.11 Phosphorus Solubilizing Microbes
115(1)
3.12 Conclusion and Future Prospect
115(1)
Acknowledgments
116(1)
Abbreviations
116(1)
References
117(4)
4 Organic Farming by Biofertilizers 121(30)
Anuradha
Jagvir Singh
4.1 Introduction
122(1)
4.2 Biofertilizers
123(5)
4.2.1 Benefits of Biofertilizers
126(1)
4.2.2 Method of Biofertilizer Application
126(1)
4.2.2.1 Seed Treatment
126(1)
4.2.2.2 Seedling Treatment
127(1)
4.2.2.3 Setts and Tuta Treatment
127(1)
4.2.2.4 Soil Treatment
127(1)
4.2.3 Precautions During Application of Biofertilizers
127(1)
4.3 Classification of Biofertilizers
128(8)
4.3.1 Nitrogen Fixer Bacteria
128(2)
4.3.1.1 Commercial Applications
129(1)
4.3.2 Cyanobacteria as Biofertilizers
130(1)
4.3.2.1 Commercial Applications
130(1)
4.3.2.2 Factors Affecting Cyanobacteria Biofertilizer
131(1)
4.3.3 Mycorrhiza as Biofertilizers
131(3)
4.3.3.1 Ectotrophic Mycorrhiza
132(1)
4.3.3.2 Endotrophic Mycorrhiza
132(1)
4.3.3.3 Changes in Mineral Compounds
133(1)
4.3.3.4 Manure Value and Its Importance
133(1)
4.3.4 Azolla as Biofertilizer
134(1)
4.3.5 Vermicompost
135(1)
4.3.5.1 Method of Vermicompost
135(1)
4.4 Organic Farming
136(3)
4.4.1 Objectives of Organic Farming
136(1)
4.4.2 Benefits of Organic Farming
136(1)
4.4.3 Benefit for Environment
137(1)
4.4.4 Methods of Organic Farming
137(1)
4.4.5 Techniques for Organic Farming
137(2)
4.4.5.1 Crop Diversity
138(1)
4.4.5.2 Soil Management
138(1)
4.4.5.3 Weed Management
138(1)
4.5 Traditional Agriculture vs. Organic and Inorganic Farming
139(1)
4.5.1 Problems Created by Traditional Farming
139(1)
4.6 Reasons for Doing Organic Farming
140(2)
4.6.1 To Save Soil Health
140(1)
4.6.2 To Preserve Nutrients
141(1)
4.6.3 To Reduce the Cost of Agriculture
141(1)
4.6.4 To Prevent Hazardous Elements in Animal Products
141(1)
4.6.5 To Protect the Environment
141(1)
4.6.6 Natural and Good Taste
142(1)
4.7 Advantage of Organic Farming
142(1)
4.7.1 Good Nutrition
142(1)
4.7.2 Good Health
142(1)
4.7.3 Freedom From Poison
142(1)
4.7.4 Less Money
143(1)
4.7.5 Great Taste
143(1)
4.7.6 Environmental Safety
143(1)
4.8 Disadvantages of Organic Farming
143(1)
4.8.1 Lack of Information
143(1)
4.8.2 Lack of Outline
143(1)
4.8.3 Making More Money in the Beginning
144(1)
4.9 Conclusion
144(1)
Acknowledgement
144(1)
References
144(7)
5 Phosphorus Solubilizing Microorganisms 151(32)
Rafig Gurbanov
Berkay Kalkanci
Hazel Karadag
Gizem Samgane
5.1 Phosphorus Pollution
152(1)
5.2 Phosphate Solubilization
153(2)
5.3 Microbial Mechanisms of Phosphate Solubilization
155(3)
5.3.1 Organic Phosphate Solubilization
156(1)
5.3.2 Inorganic Phosphate Solubilization
156(2)
5.4 Phosphate-Solubilizing Bacteria
158(2)
5.5 Phosphate-Solubilizing Fungi
160(5)
5.5.1 Phosphate-Solubilizing Fungi as Plant Growth Promoters
162(2)
5.5.2 The Methods of using Phosphate-Solubilizing Fungi in Agriculture
164(1)
5.6 Bacteria-Fungi Consortium for Phosphate Solubilization
165(2)
5.7 Conclusions
167(1)
References
167(16)
6 Exophytical and Endophytical Interactions of Plants and Microbial Activities 183(28)
A. Mbotho
D. Selikane
J.S. Sefadi
M.J. Mochane
6.1 Introduction
184(1)
6.2 Beneficial Interactions
185(9)
6.2.1 Arbuscular Mycorrhizal Fungi
186(3)
6.2.2 Plant Growth-Promoting Microorganisms
189(4)
6.2.3 Rhizobia
193(1)
6.2.4 Endophytes
194(1)
6.3 Pathogenic (Harmful) Interactions
194(9)
6.3.1 Oomycetes
195(3)
6.3.2 Fungi
198(1)
6.3.3 Bacteria
199(1)
6.3.4 Viruses
200(3)
6.4 Conclusion
203(1)
References
204(7)
7 Biofertilizer Formulations 211(46)
Sana Saif
Zeeshan Abid
Muhammad Faheem Ashiq
Muhammad Altaf
Raja Shahid Ashraf
List of Abbreviations
212(1)
7.1 Introduction
212(3)
7.1.1 Evolution of Biofertilizers
212(1)
7.1.2 Biofertilizers: A Sustainable Approach
213(2)
7.2 Biofertilizer Formulations
215(12)
7.2.1 Selection of Strain
215(12)
7.2.1.1 Microbial Strains
215(12)
7.3 Types of Formulations
227(19)
7.3.1 Carrier-Based/Powder Formulations
230(6)
7.3.1.1 Selection of Carrier Material
230(5)
7.3.1.2 Sterilization of Carrier
235(1)
7.3.2 Granular Formulations
236(1)
7.3.3 Liquid Formulations
236(3)
7.3.3.1 Inoculant Preparation
237(1)
7.3.3.2 Common Additives
238(1)
7.3.4 Cell Immobilization
239(4)
7.3.4.1 Polymer Entrapped Formulations
239(4)
7.3.4.2 Advantages and Constrains
243(1)
7.3.5 Fluid Bed-Dried Formulation
243(1)
7.3.6 Mycorrhizal Formulations
244(2)
7.4 Stickers
246(1)
7.5 Additives
246(1)
7.6 Packaging
246(1)
7.7 Conclusion
247(1)
References
247(10)
8 Scoping the Use of Transgenic Microorganisms as Potential Biofertilizers for Sustainable Agriculture and Environmental Safety 257(36)
Vasavi Rama Karri
Nirmala Nalluri
8.1 Introduction
258(2)
8.2 Role of Nitrogen in Plant Growth and Development
260(1)
8.2.1 Microorganisms Involved in Nitrogen Fixation
260(1)
8.3 Importance of Phosphorus
261(4)
8.3.1 Microbes Involved in Phosphate Solubilization
262(1)
8.3.2 Reducing the pH of Soil
262(1)
8.3.3 Mineralization
263(1)
8.3.4 Chelation
263(1)
8.3.5 Promotion of Plant Growth by PSMs
263(1)
8.3.6 Approach of Using PSMs as Biofertilizer and the Future Perspective
264(1)
8.4 Significance of Potassium (K)
265(2)
8.4.1 Microorganisms Involved in Potassium Hydrolyzation
265(1)
8.4.2 Effect of KSB on Plant Growth and Yield
266(1)
8.4.3 Abilities and Objections of K Solubilizing Bacteria
266(1)
8.5 Biofertilizers Used in Agriculture
267(1)
8.5.1 Mycorrhiza
268(1)
8.5.2 Plant Growth-Promoting Rhizobacteria (PGPR)
268(1)
8.6 Role of Biotechnology in Agricultural Sector
268(12)
8.6.1 Development of Potent Microbial Strains Through Genetic Engineering Approach to Produce Efficient Biofertilizers
269(1)
8.6.2 Genetically Altered Transgenic Azotobacter vinelandii as an Effective Diazotrophs Biofertilizer
270(1)
8.6.3 Phytostimuators and Biofertilizers
271(1)
8.6.4 Azospirillum
272(2)
8.6.5 Generation of Genetically Modified Transgenic Azospirillum Strains With Enhanced Levels of Phytoharmone Secretion
274(1)
8.6.6 Development of Rhizobium Strains With Increased Competitiveness by Genetic Modification
275(3)
8.6.7 Effect of GM Rhizobial strains on Arbuscular Mycorrhizal (AM) Fungi
278(1)
8.6.8 Release of Genetically Manipulated Rhizobium for Field Trails
279(1)
8.7 Conclusion
280(1)
Acknowledgements
281(1)
References
281(12)
9 Biofertilizer Utilization in Agricultural Sector 293(16)
Osikemekha Anthony Anani
Charles Oluwaseun Adetunji
Osayomwanbo Osarenotor
Inamuddin
9.1 Introduction
294(1)
9.2 Application of Biofertilizer as Bioaugmentation Agent for Bioremediation of Heavily Polluted Soil
295(1)
9.3 Advantages of Biofertilizer in Comparison With Synthetic Fertilizer
296(2)
9.4 Specific Examples of a Biofertilizer for Crop Improvement in Agricultural Sector
298(3)
9.5 Management of Biotic and Abiotic Stress
301(2)
9.6 Combinatory Effect of Biofertilizer With Other Substance and Their Effect on Crops
303(2)
9.7 Conclusion and Recommendation to Knowledge
305(1)
References
306(3)
10 Azospirillum: A Salient Source for Sustainable Agriculture 309(26)
Rimjim Gogoi
Sukanya Baruah
Jiban Saikia
10.1 Introduction
309(9)
10.1.1 The Genus Azospirillum
311(1)
10.1.2 Properties of Azospirillum spp.
312(26)
10.1.2.1 Chemotaxis
312(1)
10.1.2.2 Aerotaxis
313(1)
10.1.2.3 Formation of Cysts and Aggregates or Flocs
313(1)
10.1.2.4 Survivability in Rhizosphere and Bulk Soil
314(2)
10.1.2.5 Competition With Other Soil Microorganisms
316(1)
10.1.2.6 Association With Plant Roots
316(2)
10.2 Azospirillum and Induction of Stimulatory Effects for Promoting Plant Growth
318(2)
10.3 Applications in Various Fields
320(4)
10.4 Current Status
324(3)
10.5 Challenges in Large-Scale Commercial Applications of Azospirillum Inoculants
327(1)
10.6 Programs Employed for Enhanced Applications of Azospirillum Inoculants
328(1)
10.7 Conclusion and Future Prospects
329(1)
References
330(5)
11 Actinomycetes: Implications and Prospects in Sustainable Agriculture 335(36)
V. Shanthi
11.1 Introduction
336(2)
11.2 Role in Maintaining Soil Fertility
338(4)
11.2.1 Nitrogen Fixation
338(2)
11.2.2 Phosphate Solubilization
340(2)
11.2.3 Potassium Solubilization
342(1)
11.3 Role in Maintaining Soil Ecology
342(3)
11.4 Role as Biocontrol Agents
345(6)
11.4.1 Production of Antibiotics
346(2)
11.4.2 Production of Siderophores
348(1)
11.4.3 Production of Hydrogen Cyanide
349(1)
11.4.4 Production of Lytic Enzymes
349(2)
11.5 Role as Plant Stress Busters
351(4)
11.5.1 Resistance From Heavy Metal Toxicity
352(2)
11.5.2 Resistance Against Drought/Water Deficit
354(1)
11.5.3 Resistance Toward Salinity
355(1)
11.6 Conclusion
355(1)
11.7 Future Perspectives
356(1)
References
357(14)
12 Influence of Growth Pattern of Cyanobacterial Species on Biofertilizer Production 371(22)
Jasti Tejaswi
Kaligotla Venkata Subrahmanya Anirudh
Lalitha Rishika Majeti
Viswanatha Chaitanya Kolluru
Rajesh K. Srivastava
12.1 Introduction
371(2)
12.2 Habit and Habitat of Cyanobacteria
373(1)
12.3 Morphology and Mode of Reproduction
373(2)
12.4 Role of a Fertilizer in Plant Growth
375(4)
12.4.1 Synthetic Fertilizers
376(1)
12.4.2 Organic Fertilizers
377(1)
12.4.3 Biofertilizer
377(2)
12.5 Cyanobacteria as Biofertilizer
379(2)
12.6 Production of Cyanobacteria
381(1)
12.7 Methods for In Vitro Culture of Cyanobacteria
382(2)
12.7.1 Macro- and Microelements
382(1)
12.7.2 Temperature
383(1)
12.7.3 Light and Cell Density
383(1)
12.7.4 Media
383(1)
12.8 Methods for Gene Transfer into Cyanobacteria
384(2)
12.8.1 DNA-Mediated Transformation
385(1)
12.8.2 Electroporation
385(1)
12.8.3 Conjugation
386(1)
12.8.4 Biolistic Method
386(1)
12.9 Conclusion and Future Prospects
386(1)
12.10 Abbreviations
387(1)
References
388(5)
13 Biofertilizers Application in Agriculture: A Viable Option to Chemical Fertilizers 393(20)
Rajesh K. Srivastava
13.1 Introduction
394(3)
13.2 Chemical Fertilizer
397(3)
13.2.1 Customized Fertilizers
400(1)
13.2.2 Fortified Fertilizer
400(1)
13.3 Biofertilizers
400(8)
13.3.1 Biocompost
403(1)
13.3.2 Trichocard
404(1)
13.3.3 Trichocard Production
405(1)
13.3.4 Azotobacter
405(1)
13.3.5 Phosphorus
406(1)
13.3.6 Vermicompost
406(2)
13.4 Conclusion
408(1)
13.5 Abbreviations
408(1)
References
408(5)
14 Quality Control of Biofertilizers 413(16)
Swati Agarwal
Sonu Kumari
Suphiya Khan
14.1 Introduction
413(1)
14.2 Biofertilizer Requirement and Supply
414(2)
14.3 Process of Biofertilizer Quality Control
416(1)
14.4 Requirement of Quality Control
417(2)
14.5 Standards for Biofertilizers Quality Control
419(2)
14.6 Methods for Quality Testing
421(2)
14.6.1 Microbiological Methods
422(1)
14.6.2 Serological Methods
422(1)
14.6.3 Molecular Methods
423(1)
14.7 Conclusion
423(1)
Acknowledgement
423(1)
References
424(5)
15 Biofertilizers: Characteristic Features and Applications 429(62)
Tanushree Chakraborty
Nasim Akhtar
15.1 Introduction
430(1)
15.2 Types of Biofertilizers
430(1)
15.3 Characteristic Features and Applications of Biofertilizers
431(7)
15.3.1 Cyanobacteria Biofertilizer
431(4)
15.3.2 Actinomycetes
435(1)
15.3.3 Rhizobium leguminosarum by Trifolii
436(1)
15.3.4 Arbuscular Mycorrhizal Fungi (AMF)
436(1)
15.3.5 Bacillus thuringiensis
437(1)
15.3.6 Microalgae
438(1)
15.4 Phosphate Solubilizing Bacteria (PSB) and Fungus (PSF)
438(4)
15.4.1 Azotobacter
439(1)
15.4.2 Azospirillum
440(1)
15.4.3 Paenibacillus
440(1)
15.4.4 Phyllosphere Associated Methylobacterium
441(1)
15.4.5 MO Plus Biofertilizer
441(1)
15.5 Effect of Biofertilizer on Various Plants (Experimental Design)
442(5)
15.5.1 Azotobacter spp. (AZT) and Azospirillum spp. (AZP) on Eucalyptus grandis
442(1)
15.5.2 Bradyrhizobium Strains and Streptomyces griseoflavus on Some Leguminous, Cereal, and Vegetable Crops
443(1)
15.5.3 Rhizobium and Rhizobacteria on Trifolium repens
444(1)
15.5.4 Arbuscular Mycorrhizal and Phosphate Solubilizing Fungi on Coffee Plants
445(1)
15.5.5 Glutamicibacter halophytocola KLBMP 5180 on Tomato Seedlings
446(1)
15.6 Screening of Microbes for Biofertilizer
447(2)
15.6.1 Screening for Phosphate Solubilization
447(1)
15.6.2 Screening for Potassium Solubilizing
447(1)
15.6.3 Screening for Nitrogen-Fixing
448(1)
15.6.4 Screening for Zinc Solubilization
448(1)
15.6.5 Screening for Ammonia Production
448(1)
15.6.6 Screening for Hydrogen Cyanide (HCN) Production
448(1)
15.6.7 Screening for Siderophores
448(1)
15.6.8 Screening for Auxin Production
449(1)
15.6.9 Screening for Gibberellic Acid Production
449(1)
15.6.10 Screening for Production of Chitinase
449(1)
15.7 Limitations of Biofertilizers
449(1)
15.8 Success of Biofertilizer
450(3)
15.9 Debottlenecking
453(3)
15.10 Optimization of Biofertilizer
456(2)
15.10.1 Optimization of Phosphate Solubilization
456(2)
15.11 Concomitant of Biofertilizer
458(1)
15.12 New Approach
458(1)
15.13 Conclusion and Future Prospects
459(1)
References
460(31)
16 Fabrication Approaches for Biofertilizers 491(26)
Andrew N. Amenaghawon
Chinedu L. Anyalewechi
Heri Septya Kusuma
16.1 Introduction
492(1)
16.2 Biofertilizers
492(1)
16.3 Types of Biofertilizers
493(6)
16.3.1 Nitrogen-Fixing Biofertilizers
493(2)
16.3.1.1 Rhizobium
494(1)
16.3.1.2 Azospirillum
494(1)
16.3.1.3 Azotobacter
495(1)
16.3.2 Phosphorus-Solubilizing Biofertilizers
495(1)
16.3.3 Phosphate-Mobilizing Biofertilizer (Mycorrhizae)
496(1)
16.3.4 Potassium Biofertilizer
497(1)
16.3.5 Growth-Promoting Biofertilizers
497(1)
16.3.6 Blue-Green Algae (Cyanobacteria)
498(1)
16.4 Preparation Approaches for Biofertilizers
499(2)
16.4.1 Inoculant Formulation
499(1)
16.4.2 Carriers for Biofertilizer Preparation
500(1)
16.4.2.1 Sterilized Carriers
500(1)
16.4.3 Carrier Form
501(1)
16.5 Methods of Biofertilizer Formulation
501(5)
16.5.1 Solid-Based Carrier Bioformulation
501(2)
16.5.1.1 Peat Formulations
502(1)
16.5.2 Liquid Inoculants Formulation
503(1)
16.5.3 Polymer-Based Formulation
504(1)
16.5.3.1 Alginate Formulations
504(1)
16.5.4 Fluidized Bed Dried Formulation
504(1)
16.5.5 Particles From Gas Saturated Solutions (PGSS) Method
505(1)
16.5.6 Bionanoformulations
505(1)
16.6 Application Modes for Biofertilizers
506(1)
16.6.1 Seed Treatment
506(1)
16.6.2 Seedling Root Dipping
506(1)
16.6.3 Soil Application
507(1)
16.7 Factors Affecting the Preparation of Biofertilizers
507(1)
16.8 Beneficial Effects of Biofertilizers
508(1)
16.9 Challenges and Limitations of Biofertilizers
509(1)
16.10 Future Prospects
509(1)
16.11 Conclusion
510(1)
References
511(6)
17 Biofertilizers From Waste 517(24)
Rafaela Basso Sartori
Ihana Aguiar Severo
Alisson Santos de Oliveira
Paola Lasta
Leila Queiroz Zepka
Eduardo Jacob-Lopes
17.1 Introduction
518(1)
17.2 Waste Sources
519(2)
17.3 Technologies for Waste Treatment
521(7)
17.3.1 Conventional Technologies
521(1)
17.3.2 Emerging Technologies
522(6)
17.3.2.1 Nutrients Recovery From Wastes by Microalgae
523(3)
17.3.2.2 Overall Process Operations
526(2)
17.4 Main Applications of Microalgae Biofertilizers
528(4)
17.4.1 Fertility and Soil Quality
528(3)
17.4.1.1 Nitrogen Fixation
528(1)
17.4.1.2 Carbon Sequestration
529(1)
17.4.1.3 Soil Organic Matter, Improvement, and Recovery
530(1)
17.4.2 Promotion of Plant Growth, Disease, and Pest Control
531(10)
17.4.2.1 Plant Colonization and Hormone Production
531(1)
17.4.2.2 Disease and Pest Control
532(1)
17.5 Conclusion and Recommendations
532(1)
References
533(8)
18 Biofertilizers Industry Profiles in Market 541(20)
Kashish Gupta
18.1 Biofertilizers and Biofertilizer Technology
541(2)
18.1.1 Benefits of Different Biofertilizers
542(1)
18.2 Limitations in Usage of Biofertilizers
543(1)
18.3 Biofertilizer Market Segments
544(2)
18.4 Biofertilizers Market Drivers in India
546(1)
18.5 Present Scenario of Biofertilizer Market
547(2)
18.6 Key Players of Biofertilizers in Indian Market
549(1)
18.7 Problems in Promotion of Biofertilizer
550(3)
18.8 Popular Marketed Biofertilizers in Indian Market
553(1)
18.9 Recent Trends in Biofertilizer: Liquid Biofertilizer
554(1)
18.9.1 Specialties of Liquid Biofertilizer
554(1)
18.10 Conclusion and Future Scope
555(1)
References
556(5)
19 Case Study on Biofertilizer Utilization in African Continents 561(14)
Osikemekha Anthony Anani
Charles Oluwaseun Adetunji
19.1 Introduction
562(1)
19.2 Specific Examples of Biofertilizer for Crop Improvement, Environmental Bioremediation, and Their Advantages and Challenges in Africa
563(7)
19.3 Conclusion and Future Recommendations
570(1)
References
570(5)
20 Biofertilizers: Prospects and Challenges for Future 575(16)
Tanushree Chakraborty
Nasim Akhtar
20.1 Introduction
576(3)
20.2 Definition
579(1)
20.2.1 Helper Bacteria
579(1)
20.2.2 The Point of Difference
580(1)
20.3 Advances in Biofertilizer
580(1)
20.4 Preparation of Biofertilizer
581(1)
20.5 The Carrier Materials
581(1)
20.6 Production System of Biofertilizer
582(1)
20.7 Mechanism of Growth-Promoting Activity of Biofertilizers
583(1)
20.8 Advantages and Limitations
584(1)
20.9 Future Aspects
584(1)
20.10 Conclusion
585(1)
References
586(5)
21 Biofertilizers: Past, Present, and Future 591(16)
Mukta Sharma
Manoj Sharma
21.1 Introduction
592(1)
21.2 Biofertilizer: A Brief History
593(1)
21.3 Biofertilizer Classification
594(2)
21.4 Different Paradigms of Biofertilizers
596(5)
21.4.1 Impregnation of Fertilizers and Fertilizer Use Efficiency
596(1)
21.4.2 Inoculants of Mixtures of Microorganisms
597(1)
21.4.3 Different Formulations of Inoculants
597(1)
21.4.4 Inoculant Carrier
598(1)
21.4.5 Biofertilizer Carriers and Liquid Formulations
599(1)
21.4.6 Controlled Release Techniques: Encapsulation, Lyophilization, and Drying
600(1)
21.5 Biofertilizers: Current Status
601(1)
21.6 Biofertilizers: Future Paradigm
601(1)
21.7 Conclusion
602(1)
References
603(4)
22 Algal Biofertilizer 607(30)
Muhammad Mudassir Iqbal
Gulzar Muhammad
Muhammad Shahbaz Aslam
Muhammad Ajaz Hussain
Zahid Shafiq
Haseeba Razzaq
22.1 Introduction
608(1)
22.2 Algae and Algal Biofertilizers
609(4)
22.2.1 Algae is a Polyphyletic Functional Group
609(1)
22.2.2 Multifaceted Role of Algal Biofertilizer in Sustainable Cultivation
610(2)
22.2.3 Biostimulants From Algae
612(1)
22.3 Techniques of Application of Algal Biofertilizer
613(12)
22.3.1 Algal Extracts as Biofertilizer
613(6)
22.3.2 Addition of Algal Strains and Algal Biofertilizer to Soil
619(6)
22.4 Cultivation of Algae and Production of Algal Biofertilizer
625(5)
22.5 Conclusion
630(1)
References
630(7)
Index 637
Inamuddin, PhD, is an assistant professor at the Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India. He has extensive research experience in analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of multiple awards, including the Fast Track Young Scientist Award and the Young Researcher of the Year Award for 2020, from Aligarh Muslim University. He has published almost 200 research articles in various international scientific journals, 18 book chapters, and 120 edited books with multiple well-known publishers.

Mohd Imran Ahamed, PhD, is a research associate in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in various international scientific journals and has co-edited multiple books. His research work includes ion-exchange chromatography, wastewater treatment, and analysis, bending actuator and electrospinning.

Rajender Boddula, PhD, is currently working for the Chinese Academy of Sciences Presidents International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals. He is also serving as an editorial board member and a referee for several reputed international peer-reviewed journals. He has published edited books with numerous publishers and has authored over twenty book chapters.

Mashallah Rezakazemi, PhD, received his doctorate from the University of Tehran (UT) in 2015. In his first appointment, he served as associate professor in the Faculty of Chemical and Materials Engineering at Shahrood University of Technology. He has co-authored in more than 140 highly cited journal publications, conference articles and book chapters. He has received numerous major awards and grants from various funding agencies in recognition of his research. Notable among these are Khwarizmi Youth Award from the Iranian Research Organization for Science and Technology (IROST), and the Outstanding Young Researcher Award in Chemical Engineering from the Academy of Sciences of Iran. He was named a top 1% most Highly Cited Researcher by Web of Science (ESI).