Muutke küpsiste eelistusi

E-raamat: Biohydrogen

Contributions by , Contributions by , Contributions by , Edited by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by , Contributions by
  • Formaat: 296 pages
  • Ilmumisaeg: 10-Mar-2015
  • Kirjastus: De Gruyter
  • Keel: eng
  • ISBN-13: 9783110389340
  • Formaat - EPUB+DRM
  • Hind: 151,94 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
    • De Gruyter e-raamatud
  • Formaat: 296 pages
  • Ilmumisaeg: 10-Mar-2015
  • Kirjastus: De Gruyter
  • Keel: eng
  • ISBN-13: 9783110389340

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The 12 chapters in this volume detail research on biohydrogen as an alternative energy source. Researchers from the US, Europe, and Japan discuss a cyanobacterial design cell for the production of hydrogen from water; the analysis and assessment of current photobioreactor systems for photobiological hydrogen production; catalytic properties and maturation of [ FeFe]-hydrogenases; oxygen-tolerant hydrogenases and their biotechnological potential; metal centers in hydrogenase enzymes studied by x-ray spectroscopy; the structure and function of [ Fe]-hydrogenase and biosynthesis of the FeGP cofactor; hydrogenase evolution and function in eukaryotic algae; the engineering of cyanobacteria for increased hydrogen production; a semi-artificial photosynthetic Z-scheme for hydrogen production from water; photosynthesis and hydrogen metabolism and light-driven hydrogen production in vitro; re-routing redox chains for directed photocatalysis; and energy and entropy engineering on sunlight conversion to hydrogen using photosynthetic bacteria. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)
List of contributing authors XI
Preface XIII
1 Cyanobacterial design cell for the production of hydrogen from water 1(18)
Sascha Rexroth
Katrin Wiegand
Matthias Rogner
1.1 Introduction: Why hydrogen producing cells?
1(2)
1.2 Antenna size reduction
3(2)
1.3 Partial uncoupling of ATP synthesis
5(2)
1.4 Re-directing electron flow at PS1-acceptor side
7(2)
1.5 Hydrogenase design strategies
9(2)
1.6 Photobioreactor design and continuous cultivation for optimization of design cell performance
11(3)
1.7 Outlook and biotechnological potential
14(5)
2 Analysis and assessment of current photobioreactor systems for photobiological hydrogen production 19(22)
Vincent Rosner
Hermann-Josef Wagner
2.1 Introduction
19(1)
2.2 Methodological approach
20(3)
2.3 System description
23(1)
2.4 Sunlight-dependent hydrogen production rates
24(5)
2.5 System assessment
29(8)
2.5.1 Life cycle inventory analysis
30(1)
2.5.2 Life cycle impact analysis
31(5)
2.5.3 Benchmark
36(1)
2.6 Summary
37(4)
3 Catalytic properties and maturation of [ FeFe]-hydrogenases 41(20)
Martin Winkler
Thomas Happe
3.1 Introduction
41(1)
3.2 The three major structure types of [ FeFe]-hydrogenases
41(1)
3.3 The H-cluster, the catalytic center of [ FeFe]-hydrogenases
42(1)
3.4 The catalytic cycle, a working hypothesis
43(2)
3.5 The interplay between H-cluster and protein environment
45(3)
3.6 Oxygen induced H-cluster degradation
48(2)
3.7 The native H-cluster maturation system
50(3)
3.8 Spontaneous in vitro maturation of the H-cluster
53(8)
4 Oxygen-tolerant hydrogenases and their biotechnological potential 61(36)
Oliver Lenz
Lars Lauterbach
Stefan Frielingsdorf
Barbel Friedrich
4.1 Introduction
61(2)
4.2 O2-tolerant membrane-bound hydrogenases
63(4)
4.2.1 Physiological function of O2-tolerant MBHs
63(1)
4.2.2 Structure and cofactor composition of O2-tolerant MBHs
64(2)
4.2.3 Mechanism of O2 tolerance in certain MBHs
66(1)
4.2.4 Proton reduction capacity of O2-tolerant MBHs
67(1)
4.3 O2-tolerant, NAD+-reducing hydrogenases
67(6)
4.3.1 Physiological function of NAD+-reducing hydrogenases
67(2)
4.3.2 Structure and reactivity of cofactors in NAD+-reducing hydrogenase
69(1)
4.3.3 Mechanism of O2 tolerance in NAD+-reducing hydrogenase
70(2)
4.3.4 Proton reduction capacity of NAD+-reducing hydrogenases
72(1)
4.4 O2-insensitive regulatory hydrogenases
73(8)
4.4.1 Genetic organization of hydrogenase genes and hydrogenase biosynthesis
73(3)
4.4.2 Role of the regulatory hydrogenase in H2-responsive signaling
76(2)
4.4.3 Unique features of regulatory hydrogenases
78(1)
4.4.4 The O2-insensitive regulatory hydrogenase as a major player in the O2-sensitive H2 signaling pathway
79(2)
4.5 O2-insensitive actinobacterial hydrogenases
81(5)
4.5.1 Physiological function of AHs
81(3)
4.5.2 Genetic organization of the AH operons
84(1)
4.5.3 AH cofactor composition and mechanism of O2 insensitivity
84(2)
4.6 Biotechnological application of O2-tolerant hydrogenases
86(1)
4.6.1 H2 oxidation
86(2)
4.6.2 H2 production
88(9)
5 Metal centers in hydrogenase enzymes studied by X-ray spectroscopy 97(30)
Michael Naumann
5.1 Introduction
97(5)
5.2 X-ray spectroscopy results on hydrogenase proteins
102(14)
5.2.1 [ Fe]-hydrogenases
102(2)
5.2.2 [ FeFe]-hydrogenases
104(3)
5.2.3 [ NiFe]-hydrogenases
107(9)
5.2.4 [ NiFeSe]-hydrogenase
116(1)
5.3 Key questions in H2 chemistry and advanced X-ray techniques
116(11)
6 Structure and function of [ Fe]-hydrogenase and biosynthesis of the FeGP cofactor 127(18)
Seigo Shima
Takashi Fujishiro
Ulrich Ermler
6.1 Introduction
127(1)
6.2 Physiological function
128(2)
6.2.1 Hydrogenases in methanogenesis
128(1)
6.2.2 Nickel limitation
129(1)
6.3 Structure of [ Fe]-hydrogenase
130(3)
6.3.1 Protein structure
130(2)
6.3.2 Structure of the FeGP cofactor
132(1)
6.4 Catalytic properties
133(4)
6.4.1 Reactions catalyzed
133(1)
6.4.2 Inhibitors
134(1)
6.4.3 Catalytic mechanism
135(2)
6.5 Biosynthesis of the FeGP cofactor
137(4)
6.5.1 Stable-isotope labeling
137(2)
6.5.2 Hcg proteins involved in FeGP cofactor biosynthesis
139(2)
6.6 Potential application of [ Fe]-hydrogenase and the FeGP cofactor
141(4)
7 Hydrogenase evolution and function in eukaryotic algae 145(28)
Sarah D'Adamo
Matthew C. Posewitz
7.1 Introduction
145(2)
7.2 Hydrogen production in green algae
147(3)
7.3 Hydrogen utilization pathways in green algae
150(1)
7.4 Hydrogenase activity, anaerobic metabolism and evolution
151(1)
7.5 Core anaerobic metabolisms in eukaryotes
152(1)
7.6 Fermentative H2 production in algae
153(1)
7.7 Disruption of fermentative enzymes in Chlamydomonas reinhardtii
153(3)
7.8 Hydrogenase isoforms
156(1)
7.9 [ FeFe]-hydrogenase assembly
157(2)
7.10 Algal hydrogenase diversity
159(4)
7.11 Hydrogenases in saltwater organisms
163(2)
7.12 Outlook
165(8)
8 Engineering of cyanobacteria for increased hydrogen production 173(16)
Peter Lindblad
Namita Khanna
8.1 Native cyanobacteria, hydrogen production and hydrogen uptake
173(2)
8.2 Genetic engineering, synthetic biology
175(1)
8.3 Genetic engineering of cyanobacteria for enhanced hydrogen production
176(7)
8.3.1 Engineering of nitrogenases and hydrogenases for enhanced hydrogen production
177(5)
8.3.2 Genetic engineering of metabolic pathways for enhanced hydrogen production
182(1)
8.4 Future perspectives
183(6)
9 Semi-artificial photosynthetic Z-scheme for hydrogen production from water 189(22)
Tim Kothe
Wolfgang Schuhmann
Matthias Rogner
Nicolas Plumere
9.1 Nature-inspired approaches for hydrogen production
189(1)
9.2 Bio-photoelectrochemical half-cells based on photosynthetic proteins
190(7)
9.2.1 PS2-based photoanodes
191(2)
9.2.2 PS1-based photoelectrodes
193(4)
9.3 P51-catalyst nanoconstructs for hydrogen evolution
197(3)
9.3.1 Platinum PS1
198(1)
9.3.2 PS1-molecular wire-nanoparticle bioconjugates
198(1)
9.3.3 PS1-molecular wire-H2ase nanoconstructs
199(1)
9.3.4 PS1-H2ase hybrid complexes
200(1)
9.4 Electron transfer rates of PS1 in bio-photoelectrochemical devices and PS1-catalyst hybrids vs. natural photosynthesis
200(4)
9.5 Semi-artificial Z-scheme
204(2)
9.5.1 Realizing and exploiting a photosynthetic Z-scheme mimic for electrical energy production
204(1)
9.5.2 Improving the efficiency of a semi-artificial Z-scheme by adjusting the formal potential of the hydrogels
205(1)
9.6 Outlook P52-PS1-H2 catalyst
206(5)
10 Photosynthesis and hydrogen metabolism revisited. On the potential of light-driven hydrogen production In vitro 211(28)
Sven T. Stripp
Joachim Heberle
10.1 Introduction
211(1)
10.2 Photosynthesis and redox balance
212(4)
10.2.1 Basic principles of photosynthetic electron transport
212(1)
10.2.2 Molecular structure of PSI and interaction with ferredoxin
213(3)
10.2.3 Light-driven hydrogen evolution
216(1)
10.3 Hydrogenases are the natural model of hydrogen catalysis
216(5)
10.3.1 The active site of [ NiFe]- and [ FeFe]-hydrogenases
217(1)
10.3.2 The structure of [ NiFe]- and [ FeFe]-hydrogenases
218(3)
10.4 Exploiting the modules of light-driven hydrogen production in vitro
221(8)
10.4.1 Nobel metal catalysis with PSI as photosensitizer
221(1)
10.4.2 Cluster-to-cluster electron wiring from PSI to hydrogenase
222(1)
10.4.3 Reconstitution of the PSI stromal ridge by a hydrogenase construct
223(6)
10.5 Outlook
229(10)
11 Re-routing redox chains for directed photocatalysis 239(26)
Carolyn E. Lubner
Amanda M. Applegate
John H. Golbeck
11.1 Making hydrogen with sunlight an alchemic approach
239(2)
11.2 Re-routing redox chains: Biological approaches
241(9)
11.2.1 Coating PSI with platinum
241(1)
11.2.2 Engineering PSI to interact with non-natural species
242(5)
11.2.3 Fusion constructs
247(3)
11.3 Re-routing redox chains: Synthetic approaches
250(6)
11.3.1 Artificial photosynthesis
251(3)
11.3.2 Hydrogenase active site mimics and alternative H2 production catalysts
254(1)
11.3.3 Chimeras
255(1)
11.4 Future directions and implications
256(9)
12 Energy and entropy engineering on sunlight conversion to hydrogen using photosynthetic bacteria 265(12)
Naoki Ikenaga
Jun Miyake
12.1 Introduction
265(2)
12.1.1 Enthalpy to entropy
265(1)
12.1.2 The appropriate steps to the use of renewable energy
266(1)
12.2 Biological energy conversion methods as stabilizing elements of power grids
267(5)
12.2.1 Dark-fermentation in renewable energy systems
267(1)
12.2.2 Photo-fermentation in renewable energy systems
268(4)
12.3 Discussion
272(5)
12.3.1 How to overcome the entropic difficulties of renewable energy sources by using biological functions
272(1)
12.3.2 Possible applications of biohydrogen in tropical regions
273(4)
Index 277
Matthias Rögner, Ruhr University Bochum, Germany.