Muutke küpsiste eelistusi

E-raamat: Bioinformatics: The Impact of Accurate Quantification on Proteomic and Genetic Analysis and Research

Edited by (University of Wisconsin-Madison, USA)
  • Formaat: 412 pages
  • Ilmumisaeg: 24-Feb-2014
  • Kirjastus: Apple Academic Press Inc.
  • ISBN-13: 9781482246629
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 162,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 412 pages
  • Ilmumisaeg: 24-Feb-2014
  • Kirjastus: Apple Academic Press Inc.
  • ISBN-13: 9781482246629
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This title includes a number of Open Access chapters.

The book introduces bioinformatic and statistical methodology and shows approaches to bias correction and error estimation. It also presents quantitative methods for genome and proteome analysis.
Acknowledgment and How to Cite ix
List of Contributors xi
Introduction xvii
Part I: RNA-Seq
1 The Bench Scientist's Guide to Statistical Analysis of RNA-Seq Data
1(20)
Craig R. Yendrek
Elizabeth A. Ainsworth
Jyothi Thimmapuram
2 Assembly of Non-Unique Insertion Content Using Next-Generation Sequencing
21(20)
Nathaniel Parrish
Farhad Hormozdiari
Eleazar Eskin
3 RSEM: Accurate Transcript Quantification from RNA-Seq Data With or Without a Reference Genome
41(36)
Bo Li
Colin N. Dewey
Part II: Microarray
4 A Regression System for Estimation of Errors Introduced by Confocal Imaging into Gene Expression Data In Situ
77(28)
Ekaterina Myasnikova
Svetlana Surkova
Grigory Stein
Andrei Pisarev
Maria Samsonova
5 SPACE: An Algorithm to Predict and Quantify Alternatively Spliced Isoforms Using Microarrays
105(40)
Miguel A. Anton
Dorleta Gorostiaga
Elizabeth Guruceaga
Victor Segura
Pedro Carmona-Saez
Alberto Pascual-Montano
Ruben Pio
Luis M. Montuenga
Angel Rubio
6 Link-Based Quantitative Methods to Identify Differentially Coexpressed Genes and Gene Pairs
145(24)
Hui Yu
Bao-Hong Liu
Zhi-Qiang Ye
Chun Li
Yi-Xue Li
Yuan-Yuan Li
7 Dimension Reduction with Gene Expression Data Using Targeted Variable Importance Measurement
169(26)
Hui Wang
Mark J. van der Laan
Part III: GWAS
8 Genome-Wide Association Study of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis in Europe
195(22)
Emmanuelle Genin
Martin Schumacher
Jean-Claude Roujeau
Luigi Naldi
Yvonne Liss
Rani Kama
Peggy Sekula
Alain Hovnanian
Maja Mockenhaupt
9 Genotyping Common and Rare Variation Using Overlapping Pool Sequencing
217(18)
Dan He
Noah Zaitlen
Bogdan Pasaniuc
Eleazar Eskin
Eran Halperin
10 Learning Genetic Epistasis Using Bayesian Network Scoring Criteria
235(30)
Xia Jiang
Richard E. Neapolitan
M. Michael Barmada
Shyam Visweswaran
11 Combined Analysis of Three Genome-Wide Association Studies on vWF and FVIII Plasnia Levels
265(30)
Guillemette Antoni
Tiphaine Oudot-Mellakh
Apostolos Dimitromanolakis
Marine Germain
William Cohen
Philip Wells
Mark Lathrop
France Gagnon
Pierre-Emmanuel Morange
David-Alexandre Tregouet
Part IV: Proteomics
12 Statistical Methods for Quantitative Mass Spectrometry Proteomic Experiments with Labeling
295(42)
Ann L. Oberg
Douglas W. Mahoney
13 MRCQuant: An Accurate LC-MS Relative Isotopic Quantification Algorithm on TOF Instruments
337(30)
William E. Haskins
Konstantinos Petritis
Jianqiu Zhang
Author Notes 367(10)
Index 377
Dr. Yu Liu is a bioinformatician with special interest in next-gen sequencing and its applications. His specialties are molecular biology, DNA sequence analysis, next-gen sequencing application on gene expression analysis and comparative genomics, and microarray gene expression analysis. He is the director of the Bioinformatics Resource Center at the University of Wisconsin-Madison. He has a master's degree in computer science from the University of Wisconsin-Madison, a master's degree in developmental biology from the Chinese Academy of Science, and PhD in molecular biology from The Ohio State University.