|
|
xvii | |
Preface |
|
xxi | |
|
1 Introduction to basics of bioinformatics |
|
|
1 | (16) |
|
|
|
|
|
1 | (4) |
|
1.1.1 Concept behind bioinformatics, in silico biology, and computational biology |
|
|
3 | (2) |
|
1.1.2 Scientific discipline and support systems for bioinformatics |
|
|
5 | (1) |
|
1.1.3 Needs of bioinformatics |
|
|
5 | (1) |
|
1.2 Historical background of bioinformatics |
|
|
5 | (2) |
|
1.3 Aim of bioinformatics |
|
|
7 | (1) |
|
1.4 The recent development in the field of bioinformatics |
|
|
7 | (1) |
|
1.5 Challenges in bioinformatics |
|
|
8 | (1) |
|
1.6 Application of bioinformatics |
|
|
8 | (3) |
|
|
8 | (1) |
|
1.6.2 Phylogenetic analysis |
|
|
8 | (1) |
|
1.6.3 Prediction of protein secondary structure |
|
|
9 | (1) |
|
1.6.4 Protein 3D structure prediction |
|
|
9 | (1) |
|
1.6.5 Evaluation and validation of predicted protein model |
|
|
10 | (1) |
|
1.6.6 Discovery and designing of small molecules leading to drugs/agrochemical development |
|
|
10 | (1) |
|
1.6.7 Next-generation sequencing data analysis |
|
|
10 | (1) |
|
1.6.8 SNP and SSR identification |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.6.10 Metabolomics and metabolic flux analysis |
|
|
11 | (1) |
|
1.6.11 Systems biology and omics data integration |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
11 | (6) |
|
|
12 | (1) |
|
|
12 | (5) |
|
2 Biological databases and their application |
|
|
17 | (16) |
|
|
|
|
17 | (2) |
|
2.1.1 Relational databases |
|
|
17 | (1) |
|
2.1.2 Object-oriented databases |
|
|
17 | (2) |
|
|
19 | (2) |
|
|
19 | (1) |
|
2.2.2 European Nucleotide Archive |
|
|
19 | (1) |
|
2.2.3 DNA Database of Japan |
|
|
20 | (1) |
|
|
20 | (1) |
|
2.2.5 Protein information resources |
|
|
20 | (1) |
|
|
21 | (1) |
|
2.3.1 Universal Protein Resource (UniProt) |
|
|
21 | (1) |
|
2.3.2 Nonredundant database |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
|
23 | (1) |
|
2.5.1 Research collaboratory for structural bioinformatics protein data bank |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
24 | (1) |
|
|
24 | (4) |
|
2.6.1 Clustering databases |
|
|
24 | (2) |
|
2.6.2 Bibliographic databases |
|
|
26 | (1) |
|
2.6.3 Expression databases |
|
|
26 | (1) |
|
|
26 | (1) |
|
2.6.5 Interaction databases |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
2.6.9 Small molecule database |
|
|
27 | (1) |
|
2.6.10 Vaccine design database |
|
|
28 | (1) |
|
2.7 Database searching and annotation |
|
|
28 | (1) |
|
|
28 | (1) |
|
2.7.2 The sequence retrieval system |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
29 | (4) |
|
|
29 | (1) |
|
|
29 | (4) |
|
3 Biological sequence analysis |
|
|
33 | (16) |
|
|
|
|
|
|
33 | (1) |
|
3.2 Sequence alignments: determining similarity and deducing homology |
|
|
34 | (2) |
|
3.2.1 Why construct sequence alignment? |
|
|
34 | (1) |
|
3.2.2 Similarity of sequences |
|
|
34 | (1) |
|
3.2.3 Homology of sequences |
|
|
35 | (1) |
|
3.2.4 Global sequence alignment |
|
|
35 | (1) |
|
3.2.5 Local sequence alignment |
|
|
35 | (1) |
|
3.2.6 Working of alignment algorithm |
|
|
36 | (1) |
|
3.3 Scoring matrices: construction and proper selection |
|
|
36 | (2) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
37 | (1) |
|
3.4 Basic Local Alignment Search Tool |
|
|
38 | (2) |
|
|
39 | (1) |
|
3.4.2 Ungapped extension step |
|
|
39 | (1) |
|
3.4.3 Gapped extension step |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
3.5 Multiple sequence alignment (MSA) |
|
|
40 | (2) |
|
|
40 | (1) |
|
3.5.2 Multiple sequence alignment algorithm |
|
|
41 | (1) |
|
|
41 | (1) |
|
3.6 Phylogenetic analysis |
|
|
42 | (2) |
|
|
43 | (1) |
|
3.6.2 Algorithms for phylogenetic analysis |
|
|
43 | (1) |
|
3.6.3 Terminology of phylogenetic tree |
|
|
43 | (1) |
|
3.7 Application of sequence alignment |
|
|
44 | (1) |
|
|
44 | (5) |
|
|
45 | (1) |
|
|
45 | (4) |
|
4 Genome assembly and annotation |
|
|
49 | (18) |
|
|
|
|
|
|
|
|
49 | (2) |
|
4.1.1 How do you reassemble a genome after sequencing? |
|
|
50 | (1) |
|
4.1.2 Assembler technology: historical landscape |
|
|
50 | (1) |
|
4.2 Genome assembly algorithms |
|
|
51 | (1) |
|
4.2.1 The overlap-layout-consensus/string graph assemblers |
|
|
51 | (1) |
|
4.2.2 De Bruijn graph assemblers |
|
|
51 | (1) |
|
|
52 | (1) |
|
4.3.1 Quality control of raw sequencing data |
|
|
52 | (1) |
|
4.3.2 Trimming and filtering of raw reads |
|
|
52 | (1) |
|
4.4 Genome assembly approaches: types of assembly |
|
|
52 | (4) |
|
4.4.1 De novo assembly approach |
|
|
52 | (2) |
|
4.4.2 Reference-based assembly approach |
|
|
54 | (1) |
|
4.4.3 Hybrid assembly approach |
|
|
54 | (1) |
|
4.4.4 Meta-assembly approach |
|
|
54 | (2) |
|
4.5 Tools and software for genome assembly |
|
|
56 | (2) |
|
4.5.1 Genome finishing/polishing |
|
|
56 | (2) |
|
4.5.2 Assembly quality assessment and validation |
|
|
58 | (1) |
|
4.6 Pitfall in genome assemblies |
|
|
58 | (2) |
|
|
58 | (1) |
|
4.6.2 Library preparation |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
4.7 A mathematical calculation for depth / coverage |
|
|
60 | (1) |
|
|
60 | (2) |
|
4.8.1 Structural annotation |
|
|
61 | (1) |
|
4.8.2 Functional annotation |
|
|
62 | (1) |
|
4.9 Application and future prospects of genome assembly |
|
|
62 | (1) |
|
|
63 | (4) |
|
|
63 | (1) |
|
|
63 | (4) |
|
5 Computational molecular phylogeny: concepts and applications |
|
|
67 | (24) |
|
|
|
|
|
67 | (1) |
|
5.2 Convergent and divergent evolution |
|
|
67 | (1) |
|
5.3 Concept of cladistics and systematics |
|
|
68 | (1) |
|
5.4 Phylogenetic trees' terminology |
|
|
69 | (4) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
71 | (1) |
|
5.4.13 Monophyletic taxon |
|
|
71 | (1) |
|
5.4.14 Paraphyletic taxon |
|
|
71 | (1) |
|
5.4.15 Polyphyletic taxon |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
5.5 Evolutionary inference of phylogenetic trees |
|
|
73 | (1) |
|
5.5.1 Importance of shared derived characters in phylogeny |
|
|
74 | (1) |
|
5.6 Tree construction methods |
|
|
74 | (10) |
|
|
74 | (2) |
|
5.6.2 Neighbor-joining algorithm |
|
|
76 | (4) |
|
|
80 | (2) |
|
5.6.4 Maximum likelihood phylogeny |
|
|
82 | (1) |
|
|
83 | (1) |
|
5.7 Estimating reliability of phylogenetic tree |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
85 | (1) |
|
5.9 Application of molecular phylogeny |
|
|
86 | (1) |
|
|
86 | (1) |
|
5.9.2 Identifying the origin of pathogens |
|
|
87 | (1) |
|
5.9.3 Species conservation |
|
|
87 | (1) |
|
|
87 | (4) |
|
|
87 | (1) |
|
|
87 | (4) |
|
6 Applications and challenges of microarray and RNA-sequencing |
|
|
91 | (14) |
|
|
|
|
|
|
|
91 | (1) |
|
6.2 Evolution of microarray |
|
|
92 | (2) |
|
6.2.1 Automated arrays and cDNA cloning to microarray technology |
|
|
92 | (1) |
|
6.2.2 Principle of microarray |
|
|
92 | (2) |
|
6.2.3 List of microarray tools and their utility |
|
|
94 | (1) |
|
|
94 | (2) |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (3) |
|
6.4.1 Library preparation and sequencing |
|
|
96 | (1) |
|
6.4.2 Pipeline and usage of RNA-sequencing |
|
|
97 | (2) |
|
6.5 Biological databases for data submission |
|
|
99 | (1) |
|
6.6 Applications of microarray |
|
|
99 | (1) |
|
6.7 Applications of RNA-sequencing |
|
|
100 | (1) |
|
6.8 Advantages of transcriptome sequencing over microarray technology |
|
|
100 | (1) |
|
6.9 Limitations and future perspective of RNA-sequencing |
|
|
100 | (1) |
|
|
100 | (5) |
|
|
101 | (1) |
|
|
101 | (4) |
|
7 RNA-seq for revealing the function of the transcriptome |
|
|
105 | (26) |
|
|
|
|
105 | (1) |
|
7.2 Next-generation sequencing platforms and their technologies |
|
|
105 | (4) |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
107 | (1) |
|
7.2.5 Illumina Tru-seq SLR technology |
|
|
108 | (1) |
|
7.2.6 Pacific Biosciences (PacBio) SMRT sequencing |
|
|
108 | (1) |
|
|
108 | (1) |
|
7.3 Analyzing the RNA-seq data |
|
|
109 | (2) |
|
7.3.1 Quality and depth of raw sequencing data |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
110 | (1) |
|
7.3.4 Redundancy rate of reads |
|
|
111 | (1) |
|
|
111 | (10) |
|
7.4.1 Transcriptome assembly |
|
|
111 | (1) |
|
7.4.2 Identification of novel protein-coding genes |
|
|
112 | (1) |
|
7.4.3 Identification of other classes of RNAs |
|
|
113 | (2) |
|
7.4.4 Profiling expression patterns |
|
|
115 | (4) |
|
7.4.5 Degradome sequencing |
|
|
119 | (1) |
|
7.4.6 Variants detection and allele-specific expression |
|
|
120 | (1) |
|
7.4.7 Expression quantitative trait loci |
|
|
120 | (1) |
|
7.5 Databases and software for small RNA analysis |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
7.5.8 Massively parallel signature sequencing database |
|
|
122 | (1) |
|
7.5.9 CLC Genomics Workbench |
|
|
122 | (1) |
|
|
122 | (9) |
|
|
123 | (1) |
|
|
123 | (8) |
|
8 Analysis of SSR and SNP markers |
|
|
131 | (14) |
|
|
|
|
|
|
|
|
|
|
131 | (1) |
|
8.2 Analysis of SSR markers |
|
|
132 | (3) |
|
8.2.1 Benefits and limitations of microsatellite markers |
|
|
132 | (1) |
|
8.2.2 SSR mining and primer designing |
|
|
133 | (1) |
|
8.2.3 Classification and genomic localization |
|
|
133 | (1) |
|
8.2.4 Functional annotations of SSR containing sequences |
|
|
133 | (1) |
|
8.2.5 SSR amplification and evaluation of polymorphic potential |
|
|
133 | (1) |
|
8.2.6 Cross-transferability of SSR markers |
|
|
134 | (1) |
|
|
135 | (1) |
|
8.3 Analysis of SNP markers |
|
|
135 | (5) |
|
8.3.1 Approaches for sequence data generation |
|
|
135 | (1) |
|
|
135 | (1) |
|
8.3.3 Sequencing of complex genomes |
|
|
135 | (1) |
|
8.3.4 Assessment of sequence quality |
|
|
136 | (1) |
|
8.3.5 Reads assembly and mapping to reference genome |
|
|
136 | (2) |
|
8.3.6 Postprocessing of mapped reads |
|
|
138 | (1) |
|
8.3.7 Variant calling and filtration |
|
|
138 | (1) |
|
8.3.8 Functional annotation of variant |
|
|
138 | (2) |
|
|
140 | (5) |
|
|
140 | (1) |
|
|
140 | (1) |
|
|
140 | (4) |
|
|
144 | (1) |
|
9 Gene Ontology: application and importance in functional annotation of the genomic data |
|
|
145 | (14) |
|
|
|
|
|
145 | (1) |
|
9.2 Gene Ontology-based classification |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
147 | (1) |
|
9.3 Annotation of unknown gene/genome |
|
|
147 | (2) |
|
|
148 | (1) |
|
9.3.2 IPRscan (InterProScan) |
|
|
148 | (1) |
|
9.3.3 Genome Assembly and Annotation Package |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
149 | (1) |
|
9.3.9 Gene Ontology Functional Enrichment Annotation Tool |
|
|
149 | (1) |
|
9.4 GO enrichment analysis |
|
|
149 | (4) |
|
9.4.1 DAVID (Database for Annotation, Visualization, and Integrated Discovery) |
|
|
150 | (1) |
|
9.4.2 PANTHER (Protein ANalysis THrough Evolutionary Relationships) |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
9.4.8 REVIGO (Reduce & Visualize Gene Ontology) |
|
|
152 | (1) |
|
9.4.9 WEGO (Web Gene Ontology) |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
152 | (1) |
|
9.4.12 PoGo (Prediction of Gene Ontology) |
|
|
152 | (1) |
|
9.4.13 GOrilla (Gene Ontology enRlchment anaLysis and visuaLizAtion tool) |
|
|
152 | (1) |
|
|
152 | (1) |
|
9.4.15 GOEAST (Gene Ontology Enrichment Analysis Software Toolkit) |
|
|
153 | (1) |
|
9.4.16 GOAT (Gene Ontology Annotation Tool) |
|
|
153 | (1) |
|
9.4.17 GOLEM (Gene Ontology Local Exploration Map) |
|
|
153 | (1) |
|
9.4.18 GOssTo (Gene Ontology semantic similarity Tool) |
|
|
153 | (1) |
|
|
153 | (1) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
154 | (5) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
155 | (4) |
|
10 Metagenomics: the boon for microbial world knowledge and current challenges |
|
|
159 | (18) |
|
|
|
|
|
|
10.1 Introduction: an overview of metagenomics |
|
|
159 | (2) |
|
10.2 Resources in metagenomics |
|
|
161 | (1) |
|
10.3 Challenges in metagenomics |
|
|
161 | (1) |
|
10.4 The workflow in metagenome analysis |
|
|
162 | (1) |
|
10.5 Dataset acquire and processing |
|
|
162 | (1) |
|
10.6 Quality control analysis |
|
|
162 | (2) |
|
10.6.1 Base quality score |
|
|
162 | (1) |
|
10.6.2 Sequence quality score |
|
|
162 | (1) |
|
10.6.3 Overrepresented sequences |
|
|
163 | (1) |
|
10.6.4 Per base N content |
|
|
163 | (1) |
|
10.6.5 Duplicate sequences |
|
|
163 | (1) |
|
10.6.6 Read length distribution |
|
|
163 | (1) |
|
10.6.7 Per base sequence content |
|
|
163 | (1) |
|
10.6.8 Guanine-cytosine content |
|
|
163 | (1) |
|
10.6.9 Overrepresented k-mers |
|
|
163 | (1) |
|
10.6.10 Quality analysis and improving software tools |
|
|
163 | (1) |
|
10.7 Genome assembly tools in metagenomics |
|
|
164 | (1) |
|
10.8 Binning tools in metagenomics |
|
|
164 | (2) |
|
10.8.1 Statistical analysis |
|
|
166 | (1) |
|
10.9 Data storage and sharing |
|
|
166 | (1) |
|
10.10 Metagenomics analysis: a case study |
|
|
166 | (1) |
|
10.11 Material, methodology, and outcome |
|
|
166 | (6) |
|
10.11.1 Metagenome dataset |
|
|
166 | (1) |
|
10.11.2 Sequencing quality analysis |
|
|
166 | (2) |
|
10.11.3 Hits distribution of metagenome from the database sources |
|
|
168 | (1) |
|
10.11.4 Hits distribution of functional group |
|
|
168 | (2) |
|
10.11.5 Taxonomic hits distribution |
|
|
170 | (1) |
|
10.11.6 Rarefaction curve |
|
|
170 | (1) |
|
|
170 | (2) |
|
10.12 Advantages of metagenomics study |
|
|
172 | (1) |
|
10.13 Limitations and future perspective |
|
|
172 | (1) |
|
|
172 | (5) |
|
|
173 | (1) |
|
|
173 | (4) |
|
11 Protein structure prediction |
|
|
177 | (12) |
|
|
|
|
|
|
|
177 | (1) |
|
11.2 Protein structure prediction |
|
|
177 | (1) |
|
11.3 Method of protein structure prediction |
|
|
178 | (6) |
|
11.3.1 Homology modeling (comparative modeling) |
|
|
178 | (2) |
|
11.3.2 Threading or fold recognition |
|
|
180 | (2) |
|
11.3.3 Ab initio approach |
|
|
182 | (2) |
|
11.4 Evaluation of predicted protein structure |
|
|
184 | (1) |
|
11.5 Applications of structure prediction |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
11.5.3 Binding site prediction |
|
|
185 | (1) |
|
11.5.4 Protein docking and virtual screening |
|
|
185 | (1) |
|
11.5.5 Understanding the dynamics of protein or protein--ligand complex |
|
|
186 | (1) |
|
11.5.6 Structure evolution analysis |
|
|
186 | (1) |
|
|
186 | (3) |
|
|
186 | (1) |
|
|
186 | (2) |
|
|
188 | (1) |
|
12 Structural and functional analysis of protein |
|
|
189 | (18) |
|
|
|
|
12.1 Protein preliminaries |
|
|
189 | (1) |
|
12.2 Growth of the protein structural database |
|
|
189 | (1) |
|
12.3 Structural topology and fold classification scheme |
|
|
190 | (1) |
|
12.4 D-Structure quality assessment protocol |
|
|
191 | (1) |
|
12.5 Protein 3D structure prediction |
|
|
191 | (6) |
|
|
192 | (5) |
|
12.6 Machine learning in PSP |
|
|
197 | (3) |
|
12.6.1 Feature engineering and representation |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
12.6.4 ML models' implementation and evaluation |
|
|
199 | (1) |
|
|
200 | (7) |
|
|
201 | (1) |
|
|
201 | (6) |
|
13 Computational approaches in drug designing |
|
|
207 | (12) |
|
|
|
|
207 | (1) |
|
13.2 Computer-aided drug designing |
|
|
207 | (2) |
|
13.2.1 Structure-based drug design |
|
|
207 | (2) |
|
13.2.2 Ligand-based drug design |
|
|
209 | (1) |
|
13.3 Computational approaches |
|
|
209 | (5) |
|
13.3.1 Molecular modeling |
|
|
209 | (2) |
|
13.3.2 Binding site and cavity prediction |
|
|
211 | (1) |
|
13.3.3 Computational ligand designing and searching |
|
|
211 | (1) |
|
13.3.4 Pharmacophore modeling |
|
|
211 | (1) |
|
|
211 | (1) |
|
13.3.6 Molecular dynamics simulation |
|
|
212 | (1) |
|
13.3.7 Quantitative structure--activity relationship |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
214 | (1) |
|
13.5 Recent trends in drug designing |
|
|
214 | (1) |
|
|
215 | (4) |
|
|
215 | (1) |
|
|
215 | (4) |
|
14 Structure-based drug designing |
|
|
219 | (14) |
|
|
|
|
|
|
219 | (1) |
|
14.2 Background of structure-based drug design |
|
|
220 | (1) |
|
|
221 | (6) |
|
14.3.1 Target identification |
|
|
221 | (1) |
|
14.3.2 Target structure determination/prediction |
|
|
221 | (2) |
|
14.3.3 Cavity/binding site prediction |
|
|
223 | (1) |
|
14.3.4 Ligand structure preparation / retrieval |
|
|
223 | (1) |
|
14.3.5 Molecular docking and virtual screening |
|
|
224 | (2) |
|
|
226 | (1) |
|
14.3.7 Molecular dynamics simulation |
|
|
226 | (1) |
|
14.3.8 Binding-free-energy calculation-MM-PBSA |
|
|
227 | (1) |
|
14.4 Recent development in SBDD |
|
|
227 | (1) |
|
14.5 Challenges and limitations |
|
|
228 | (1) |
|
|
228 | (1) |
|
|
229 | (4) |
|
|
229 | (1) |
|
|
229 | (4) |
|
15 Ligand-based drug designing |
|
|
233 | (20) |
|
|
|
|
|
|
|
233 | (1) |
|
|
234 | (1) |
|
15.2.1 Build pharmacophore hypothesis |
|
|
234 | (1) |
|
15.2.2 Alignment of molecules |
|
|
235 | (1) |
|
15.2.3 Similarity search methods |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
15.3.1 3D similarities depend on the alignment |
|
|
236 | (1) |
|
15.3.2 Conformational flexibility |
|
|
236 | (1) |
|
|
236 | (1) |
|
15.3.4 Fragment-based drug design |
|
|
236 | (1) |
|
15.4 Pharmacophore mapping |
|
|
236 | (2) |
|
15.4.1 Diverse conformation generation |
|
|
236 | (1) |
|
15.4.2 Generation of 3D pharmacophore |
|
|
237 | (1) |
|
15.4.3 Validation of the pharmacophore model |
|
|
237 | (1) |
|
15.5 Pharmacophore classifications |
|
|
238 | (1) |
|
15.5.1 Ligand-based pharmacophore modeling |
|
|
238 | (1) |
|
15.5.2 Structure-based pharmacophore modeling |
|
|
239 | (1) |
|
15.6 Application of pharmacophore in virtual screening and de novo design |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
15.7 Advancement in exploring 3D pharmacophore principles over the above limitations |
|
|
240 | (1) |
|
15.8 Quantitative structure-activity relationship |
|
|
240 | (8) |
|
15.8.1 Designation of QSAR |
|
|
241 | (1) |
|
15.8.2 Backbone of chemical similarity |
|
|
241 | (1) |
|
|
242 | (1) |
|
15.8.4 Classification of 3D QSAR approaches |
|
|
243 | (1) |
|
15.8.5 Molecular interactions and energies |
|
|
243 | (2) |
|
|
245 | (1) |
|
15.8.7 Concept of applicability domain and QSAR approaches |
|
|
246 | (2) |
|
15.9 Development of new QSAR: HQSAR |
|
|
248 | (1) |
|
15.10 Application of QSAR/SAR |
|
|
248 | (2) |
|
15.10.1 Synthetic organic chemistry and QSAR |
|
|
248 | (1) |
|
15.10.2 Prediction of kinetic and thermodynamic parameters |
|
|
249 | (1) |
|
15.10.3 Drug development and other applications |
|
|
249 | (1) |
|
|
250 | (3) |
|
|
250 | (1) |
|
|
250 | (3) |
|
16 Discovery and optimization of lead molecules in drug designing |
|
|
253 | (16) |
|
|
|
|
253 | (1) |
|
|
254 | (2) |
|
16.2.1 Case study: inhibition of lipoxygenases |
|
|
255 | (1) |
|
16.3 Discovery of the lead molecule |
|
|
256 | (1) |
|
16.4 Types of lead molecules |
|
|
256 | (3) |
|
16.4.1 Natural lead compounds |
|
|
256 | (1) |
|
16.4.2 Synthetic lead molecules |
|
|
257 | (2) |
|
16.4.3 Semisynthetic drugs |
|
|
259 | (1) |
|
16.5 Lead optimization and strategies |
|
|
259 | (4) |
|
16.5.1 By using organic synthetic chemistry |
|
|
259 | (2) |
|
16.5.2 Structure simplification |
|
|
261 | (1) |
|
16.5.3 Structure modification |
|
|
261 | (1) |
|
16.5.4 Functional group interconversion |
|
|
261 | (1) |
|
16.5.5 Bonding strength and selectivity |
|
|
262 | (1) |
|
16.5.6 Using thermodynamic, pharmacodynamics, and pharmacokinetic parameters |
|
|
262 | (1) |
|
16.6 Computational lead optimization |
|
|
263 | (1) |
|
16.7 Advantages of computational lead designing |
|
|
263 | (1) |
|
|
263 | (1) |
|
|
264 | (5) |
|
|
265 | (1) |
|
|
265 | (4) |
|
17 Pharmacophore modeling and its applications |
|
|
269 | (22) |
|
|
|
|
|
|
269 | (2) |
|
17.2 Basics of pharmacophore modeling |
|
|
271 | (2) |
|
17.2.1 Division of initial data into diverse datasets |
|
|
271 | (1) |
|
17.2.2 Conformational analysis with three-dimensional structures |
|
|
272 | (1) |
|
17.3 Different methods of pharmacophore generation |
|
|
273 | (3) |
|
17.3.1 Ligand-based pharmacophore modeling |
|
|
273 | (2) |
|
17.3.2 Structure-based pharmacophore modeling |
|
|
275 | (1) |
|
17.4 Validation of pharmacophore models |
|
|
276 | (2) |
|
17.4.1 Receiver operating characteristic curve |
|
|
276 | (1) |
|
17.4.2 Structure-based pharmacophore modeling approach for the design of azaindole derivatives as DprEI inhibitors for tuberculosis: a case study |
|
|
277 | (1) |
|
17.5 Recent trends in pharmacophore generation |
|
|
278 | (3) |
|
17.5.1 Machine-learning models incorporated with pharmacophore descriptors |
|
|
278 | (1) |
|
17.5.2 Prediction of pharmacokinetic properties |
|
|
279 | (1) |
|
17.5.3 Target identification and de novo ligand design using pharmacophore approaches |
|
|
279 | (1) |
|
17.5.4 Protein functionality studies |
|
|
279 | (1) |
|
17.5.5 3D pharmacophore modeling using a web platform |
|
|
279 | (1) |
|
17.5.6 Pharmacophore methods in light of molecular dynamics simulations |
|
|
280 | (1) |
|
17.6 Applications of pharmacophore modeling |
|
|
281 | (2) |
|
17.6.1 Generation of e-pharmacophore for virtual screening of drug molecules |
|
|
281 | (1) |
|
|
282 | (1) |
|
17.6.3 Generation of a multitarget ligand |
|
|
282 | (1) |
|
17.6.4 Modulation of the immune system |
|
|
282 | (1) |
|
17.6.5 Pharmacophore-guided drug target identification |
|
|
282 | (1) |
|
17.7 Future perspectives of pharmacophore models |
|
|
283 | (1) |
|
17.7.1 Fragment-based drug design |
|
|
283 | (1) |
|
17.7.2 Protein--protein interaction inhibition |
|
|
283 | (1) |
|
17.7.3 A potential role in protein design |
|
|
283 | (1) |
|
|
284 | (7) |
|
|
284 | (1) |
|
|
284 | (7) |
|
18 Molecular docking and molecular dynamics simulation |
|
|
291 | (14) |
|
|
|
|
|
291 | (1) |
|
|
292 | (3) |
|
|
292 | (2) |
|
|
294 | (1) |
|
18.2.3 Knowledge-based SFs |
|
|
294 | (1) |
|
18.3 Docking methodologies |
|
|
295 | (2) |
|
|
295 | (1) |
|
18.3.2 Semiflexible docking |
|
|
295 | (1) |
|
18.3.3 Virtual screening of high-throughput docking |
|
|
295 | (1) |
|
|
296 | (1) |
|
18.3.5 Machine learning in docking |
|
|
296 | (1) |
|
18.3.6 Docking tools and their features |
|
|
297 | (1) |
|
18.4 Molecular dynamics simulation |
|
|
297 | (3) |
|
18.4.1 Postdocking refinement |
|
|
298 | (1) |
|
18.4.2 Binding-free energy calculations: MM-GBSA/MM-PBSA |
|
|
299 | (1) |
|
18.5 Challenges in molecular docking and MD simulation techniques |
|
|
300 | (1) |
|
|
301 | (4) |
|
|
301 | (1) |
|
|
301 | (4) |
|
19 Pharmacokinetics and pharmacodynamics analysis of drug candidates |
|
|
305 | (12) |
|
|
|
|
|
|
|
305 | (1) |
|
19.2 Postgenomic era and drug discovery |
|
|
306 | (1) |
|
|
307 | (4) |
|
|
308 | (1) |
|
19.3.2 Drug distribution (binding / localization/storage) |
|
|
308 | (1) |
|
|
309 | (2) |
|
|
311 | (1) |
|
|
311 | (1) |
|
19.5 Computational approaches for ADMET prediction |
|
|
311 | (2) |
|
19.6 Translational bioinformatics |
|
|
313 | (1) |
|
|
313 | (1) |
|
19.7.1 Benefits of drug repurposing |
|
|
313 | (1) |
|
19.7.2 Computational drug repurposing |
|
|
314 | (1) |
|
19.8 Role of pharmacogenomics in precision medicine |
|
|
314 | (1) |
|
19.9 Chemical diversity of natural products: a source for computer-aided drug discovery |
|
|
315 | (1) |
|
|
315 | (2) |
|
|
315 | (1) |
|
|
315 | (1) |
|
|
316 | (1) |
|
20 Computational approaches for vaccine designing |
|
|
317 | (20) |
|
|
|
|
|
317 | (1) |
|
20.2 Antigen selection and immunological databases |
|
|
318 | (1) |
|
20.2.1 Exogenous antigens |
|
|
318 | (1) |
|
20.2.2 Endogenous antigens |
|
|
319 | (1) |
|
|
319 | (1) |
|
20.3 In silico method for B-cell epitope prediction |
|
|
319 | (3) |
|
20.3.1 Prediction of conformational B-cell epitopes |
|
|
320 | (1) |
|
20.3.2 Prediction of linear B-cell epitopes |
|
|
321 | (1) |
|
20.4 In silico method for T-cell epitope prediction |
|
|
322 | (3) |
|
20.4.1 MHC class I binder prediction |
|
|
323 | (1) |
|
20.4.2 MHC class II binder prediction |
|
|
324 | (1) |
|
20.4.3 MHC gene diversity and its importance in T-cell epitope prediction |
|
|
325 | (1) |
|
20.5 Adjuvant and linker selection |
|
|
325 | (1) |
|
20.6 Building 3D model and validation of fusion vaccine construct |
|
|
326 | (1) |
|
20.7 Miscellaneous properties |
|
|
326 | (2) |
|
|
326 | (1) |
|
20.7.2 Half-life or stability |
|
|
327 | (1) |
|
20.7.3 Delivery methodology |
|
|
327 | (1) |
|
20.8 Role of next-generation sequencing technology in vaccine design |
|
|
328 | (1) |
|
20.9 Computer-aided vaccine development example |
|
|
328 | (1) |
|
|
329 | (8) |
|
|
329 | (1) |
|
|
330 | (1) |
|
|
330 | (7) |
|
21 Metabolomics and flux balance analysis |
|
|
337 | (30) |
|
|
|
|
|
337 | (1) |
|
21.2 Definition of metabolomics |
|
|
338 | (1) |
|
21.3 MS- and NMR-based techniques in metabolomics |
|
|
338 | (1) |
|
21.4 Data processing in metabolomics |
|
|
339 | (2) |
|
21.4.1 Nuclear magnetic resonance spectroscopy |
|
|
339 | (1) |
|
21.4.2 Workflow of MS-based metabolomics |
|
|
339 | (1) |
|
21.4.3 Limitations of NMR and MS methods |
|
|
340 | (1) |
|
21.4.4 Recent advances in MS- and NMR-based metabolomics |
|
|
341 | (1) |
|
21.4.5 Challenges and affecting factors |
|
|
341 | (1) |
|
21.5 Applications of metabolomics |
|
|
341 | (2) |
|
|
341 | (1) |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
342 | (1) |
|
21.5.5 Food and herbal medicines |
|
|
343 | (1) |
|
21.6 Flux balance analysis |
|
|
343 | (1) |
|
21.7 Metabolic networks and model construction |
|
|
344 | (8) |
|
21.7.1 Metabolic model: construction and refinement |
|
|
345 | (3) |
|
|
348 | (1) |
|
|
349 | (1) |
|
21.7.4 Types of constraints |
|
|
349 | (1) |
|
|
350 | (1) |
|
|
351 | (1) |
|
21.8 Metabolic control analysis and isotopic steady state/carbon flux analysis |
|
|
352 | (3) |
|
21.8.1 Metabolic control analysis |
|
|
352 | (1) |
|
21.8.2 Carbon flux analysis |
|
|
352 | (1) |
|
21.8.3 Different types of flux balance analysis at different conditions |
|
|
353 | (2) |
|
21.9 Some important tools of flux balance analysis |
|
|
355 | (3) |
|
|
355 | (1) |
|
|
355 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
357 | (1) |
|
|
357 | (1) |
|
|
357 | (1) |
|
|
357 | (1) |
|
|
357 | (1) |
|
21.10 Applications, challenges, and future perspectives of FBA |
|
|
358 | (3) |
|
|
358 | (2) |
|
21.10.2 Challenges and future perspectives |
|
|
360 | (1) |
|
21.11 Case study: applications of metabolomics and flux balance analysis in industrially important microorganisms |
|
|
361 | (2) |
|
21.11.1 Lactococcus lactis |
|
|
361 | (1) |
|
21.11.2 Saccharomyces cerevisiae |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
363 | (4) |
|
|
363 | (4) |
|
22 Topological parameters, patterns, and motifs in biological networks |
|
|
367 | (14) |
|
|
|
|
|
367 | (1) |
|
|
368 | (1) |
|
22.2.1 Construction of biological networks |
|
|
368 | (1) |
|
22.3 Network motifs and patterns |
|
|
369 | (1) |
|
22.3.1 Motif discovery and counting |
|
|
369 | (1) |
|
22.4 Analysis of biological network |
|
|
370 | (3) |
|
|
371 | (2) |
|
22.4.2 Adjacency matrices |
|
|
373 | (1) |
|
22.5 Topological parameters |
|
|
373 | (2) |
|
|
374 | (1) |
|
22.5.2 The average of shortest path length |
|
|
374 | (1) |
|
22.5.3 Clustering coefficient |
|
|
375 | (1) |
|
22.5.4 Betweenness centrality |
|
|
375 | (1) |
|
22.5.5 Statistical comparison |
|
|
375 | (1) |
|
22.6 Biological significance of network motifs |
|
|
375 | (1) |
|
22.7 Applications of network biology |
|
|
376 | (1) |
|
22.8 Limitations and challenges |
|
|
376 | (1) |
|
|
376 | (5) |
|
|
377 | (1) |
|
|
377 | (4) |
|
23 Network biology and applications |
|
|
381 | (28) |
|
|
|
23.1 Introduction to biological networks |
|
|
381 | (1) |
|
23.2 Biological networks properties |
|
|
381 | (1) |
|
23.2.1 Path, average path length, and diameter |
|
|
381 | (1) |
|
23.2.2 Degree aka connectivity |
|
|
382 | (1) |
|
|
382 | (1) |
|
23.2.4 Small world network |
|
|
382 | (1) |
|
23.2.5 Date and party hub |
|
|
382 | (1) |
|
|
382 | (1) |
|
23.3 Types of biological networks |
|
|
382 | (5) |
|
23.3.1 Ecological networks |
|
|
383 | (1) |
|
23.3.2 Gene (genetic) regulatory network |
|
|
383 | (1) |
|
23.3.3 Protein--protein interaction network |
|
|
384 | (1) |
|
23.3.4 Metabolic networks |
|
|
385 | (1) |
|
23.3.5 Cellular signaling network |
|
|
385 | (2) |
|
23.3.6 Gene coexpression network |
|
|
387 | (1) |
|
23.4 Experimental methods in network biology |
|
|
387 | (6) |
|
|
387 | (1) |
|
23.4.2 Deep mRNA sequencing |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
389 | (1) |
|
23.4.5 Genome-wide bisulfite sequencing |
|
|
389 | (1) |
|
|
390 | (1) |
|
23.4.7 Mass spectrometry-based proteomics |
|
|
391 | (1) |
|
23.4.8 Flow and mass cytometry |
|
|
392 | (1) |
|
|
392 | (1) |
|
23.5 Resources for biological network-based studies |
|
|
393 | (1) |
|
23.5.1 Kyoto Encyclopedia of Genes and Genomes |
|
|
393 | (1) |
|
23.5.2 BioCyc Database Collection |
|
|
393 | (1) |
|
|
393 | (1) |
|
23.5.4 ExplorEnz: the enzyme database |
|
|
394 | (1) |
|
23.5.5 Biochemical Genetic and Genomic/Biochemical Genetic and Genomic models |
|
|
394 | (1) |
|
|
394 | (1) |
|
|
394 | (1) |
|
23.6 Tools for network pathway analysis |
|
|
394 | (2) |
|
|
395 | (1) |
|
|
395 | (1) |
|
|
395 | (1) |
|
|
395 | (1) |
|
23.6.5 Network Analysis Tools |
|
|
396 | (1) |
|
|
396 | (1) |
|
|
396 | (1) |
|
23.7 Applications of network biology |
|
|
396 | (3) |
|
23.7.1 Applications in rare diseases |
|
|
396 | (2) |
|
23.7.2 Determination of protein function |
|
|
398 | (1) |
|
23.7.3 Pathway determination |
|
|
398 | (1) |
|
23.7.4 Essential protein identification |
|
|
398 | (1) |
|
23.7.5 Functional modules' identification |
|
|
399 | (1) |
|
23.8 Challenges and future perspective |
|
|
399 | (1) |
|
23.8.1 Pseudo temporal ordering |
|
|
399 | (1) |
|
23.8.2 Multiple data sources |
|
|
400 | (1) |
|
23.8.3 Combination of algorithms |
|
|
400 | (1) |
|
|
400 | (9) |
|
|
401 | (1) |
|
|
401 | (8) |
|
24 Pathway modeling and simulation analysis |
|
|
409 | (16) |
|
|
|
|
|
409 | (1) |
|
24.2 Computational modeling of a pathway |
|
|
409 | (2) |
|
|
410 | (1) |
|
24.2.2 Approaches of modeling |
|
|
410 | (1) |
|
24.3 General diagram and language used in pathway modeling |
|
|
411 | (2) |
|
24.3.1 Systems Biology Graphical Notation |
|
|
411 | (1) |
|
24.3.2 Systems Biology Markup Language |
|
|
412 | (1) |
|
24.4 Pathway simulations analysis |
|
|
413 | (2) |
|
24.4.1 Ordinary differential equations |
|
|
413 | (1) |
|
24.4.2 Stochastic simulation |
|
|
414 | (1) |
|
24.5 Platforms used for modeling and simulations |
|
|
415 | (3) |
|
24.5.1 Pathway designing tools |
|
|
415 | (1) |
|
|
415 | (1) |
|
|
416 | (2) |
|
24.6 Applications of pathway modeling and simulations |
|
|
418 | (2) |
|
24.6.1 Metabolic engineering |
|
|
418 | (1) |
|
|
418 | (1) |
|
24.6.3 Study of phenomics |
|
|
419 | (1) |
|
24.6.4 Flux balance analysis |
|
|
419 | (1) |
|
|
420 | (1) |
|
24.7.1 Knowledge gaps between computationalists and experimentalists |
|
|
420 | (1) |
|
24.7.2 Theory development |
|
|
420 | (1) |
|
24.7.3 Miscellaneous computational challenges |
|
|
420 | (1) |
|
|
420 | (5) |
|
|
421 | (1) |
|
|
421 | (4) |
|
25 Systems biology and big data analytics |
|
|
425 | (18) |
|
|
|
|
|
|
|
425 | (1) |
|
25.2 Big data in general and in the context of biology |
|
|
425 | (1) |
|
25.3 Types of data in systems biology |
|
|
426 | (3) |
|
25.3.1 Biological sequences |
|
|
428 | (1) |
|
25.3.2 Molecular structure |
|
|
428 | (1) |
|
|
428 | (1) |
|
25.3.4 Binding sites and domains |
|
|
429 | (1) |
|
25.3.5 Protein-protein interaction |
|
|
429 | (1) |
|
|
429 | (1) |
|
25.3.7 Metabolic pathways |
|
|
429 | (1) |
|
25.4 Biological big data resources |
|
|
429 | (3) |
|
25.4.1 Genomics and transcriptomics resources |
|
|
430 | (1) |
|
25.4.2 Proteomics resources |
|
|
430 | (1) |
|
25.4.3 Cellular metabolome |
|
|
430 | (1) |
|
25.4.4 Protein-protein interaction databases |
|
|
430 | (2) |
|
25.4.5 Drug and chemical compound databases |
|
|
432 | (1) |
|
25.4.6 Different other databases |
|
|
432 | (1) |
|
25.5 Network generation and its analysis from various sources of data |
|
|
432 | (2) |
|
25.6 Big data in drug repurposing and systems pharmacology |
|
|
434 | (1) |
|
25.6.1 Network-based approaches for systems pharmacology |
|
|
435 | (1) |
|
25.7 Case study related to transcriptome data analysis |
|
|
435 | (2) |
|
25.8 Limitations in big data analysis |
|
|
437 | (1) |
|
|
438 | (5) |
|
|
438 | (1) |
|
|
438 | (1) |
|
|
438 | (5) |
|
26 Machine learning in bioinformatics |
|
|
443 | (14) |
|
|
|
|
|
443 | (1) |
|
|
443 | (2) |
|
|
444 | (1) |
|
26.2.2 Supervised machine learning in bioinformatics |
|
|
444 | (1) |
|
26.3 Unsupervised machine learning |
|
|
445 | (1) |
|
26.4 Problems to understand supervised learning and unsupervised learning |
|
|
446 | (1) |
|
|
446 | (4) |
|
|
447 | (3) |
|
|
450 | (2) |
|
26.6.1 K-means clustering |
|
|
450 | (1) |
|
26.6.2 Density-based clustering |
|
|
450 | (1) |
|
26.6.3 Distribution-based clustering |
|
|
451 | (1) |
|
|
451 | (1) |
|
26.7 Unsupervised learning in bioinformatics |
|
|
452 | (1) |
|
26.8 Application of machine learning |
|
|
452 | (1) |
|
|
452 | (1) |
|
26.8.2 Protein structure prediction |
|
|
452 | (1) |
|
26.8.3 Research area in bioinformatics with deep learning |
|
|
453 | (1) |
|
|
453 | (1) |
|
|
454 | (3) |
|
|
454 | (1) |
|
|
454 | (3) |
|
27 Bioinformatics and biological data mining |
|
|
457 | (1) |
|
|
|
|
|
27 A Biological data mining |
|
|
457 | (16) |
|
27.2 Data mining applications |
|
|
457 | (1) |
|
|
458 | (3) |
|
|
458 | (1) |
|
|
458 | (1) |
|
|
459 | (1) |
|
|
459 | (1) |
|
|
459 | (1) |
|
27.3.6 Description and visualization |
|
|
460 | (1) |
|
27.3.7 Case studies using Waikato environment for knowledge analysis |
|
|
461 | (1) |
|
27.4 Feature selection technique in data mining |
|
|
461 | (1) |
|
27.4.1 Objective of feature selection |
|
|
462 | (1) |
|
27.5 Major data mining algorithms applicable to biological data |
|
|
462 | (1) |
|
|
462 | (1) |
|
|
462 | (1) |
|
27.5.3 Support vector machine |
|
|
463 | (1) |
|
27.6 Biological data evolution and related issues |
|
|
463 | (3) |
|
27.6.1 Biological data availability |
|
|
463 | (1) |
|
27.6.2 Biological data availability in computer-readable form |
|
|
464 | (1) |
|
27.6.3 Biological data cleaning |
|
|
464 | (1) |
|
27.6.4 Biological data quality |
|
|
464 | (1) |
|
27.6.5 Biological data dimensionality |
|
|
464 | (2) |
|
27.6.6 Biological data knowledge discovery |
|
|
466 | (1) |
|
27.7 Bioinformatics research areas and tools |
|
|
466 | (3) |
|
27.7.1 Sequence searching, comparison, and evolutionary analysis |
|
|
467 | (1) |
|
27.7.2 Annotation of gene/protein structure and function |
|
|
467 | (1) |
|
27.7.3 Gene and protein expression analysis |
|
|
468 | (1) |
|
27.7.4 Mutation and disease association study |
|
|
468 | (1) |
|
27.7.5 Protein structure prediction, docking, and protein--protein interaction analysis |
|
|
468 | (1) |
|
27.7.6 Biological systems modeling and network analysis |
|
|
468 | (1) |
|
27.7.7 Expressed sequence tag analysis |
|
|
469 | (1) |
|
27.7.8 MicroRNA and target prediction |
|
|
469 | (1) |
|
27.7.9 Medical and health data analysis and clinical decision support system |
|
|
469 | (1) |
|
|
469 | (1) |
|
|
470 | (3) |
|
|
470 | (1) |
|
|
470 | (3) |
Index |
|
473 | |