Muutke küpsiste eelistusi

E-raamat: Bioinformatics Technologies

  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Dec-2005
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540268888
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 12-Dec-2005
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540268888

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Solving modern biological problems requires advanced computational methods. Bioinformatics evolved from the active interaction of two fast-developing disciplines, biology and information technology. The central issue of this emerging field is the transformation of often distributed and unstructured biological data into meaningful information.



This book describes the application of well-established concepts and techniques from areas like data mining, machine learning, database technologies, and visualization techniques to problems like protein data analysis, genome analysis and sequence databases. Chen has collected contributions from leading researchers in each area. The chapters can be read independently, as each offers a complete overview of its specific area, or, combined, this monograph is a comprehensive treatment that will appeal to students, researchers, and R&D professionals in industry who need a state-of-the-art introduction into this challenging and exciting young field.

Arvustused

From the reviews:









"Today, the word bioinformatics is most commonly used to denote computational molecular biology. This book collects surveys of the most significant themes of the field, written by various researchers. Extensive bibliographies accompany each chapter. the wide range of subject matter covered makes the book a good starting point for students or researchers with the necessary computer science background who are embarking on bioinformatics projects or research in the area." (R. M. Malyankar, Computing Reviews, April, 2006)

Preface V
1 Introduction to Bioinformatics
1(14)
1.1 Introduction
1(1)
1.2 Needs of Bioinformatics Technologies
2(3)
1.3 An Overview of Bioinformatics Technologies
5(3)
1.4 A Brief Discussion on the
Chapters
8(4)
References
12(3)
2 Overview of Structural Bioinformatics
15(30)
2.1 Introduction
15(2)
2.2 Organization of Structural Bioinformatics
17(1)
2.3 Primary Resource: Protein Data Bank
18(4)
2.3.1 Data Format
18(1)
2.3.2 Growth of Data
18(2)
2.3.3 Data Processing and Quality Control
20(1)
2.3.4 The Future of the PDB
21(1)
2.3.5 Visualization
21(1)
2.4 Secondary Resources and Applications
22(15)
2.4.1 Structural Classification
22(6)
2.4.2 Structure Prediction
28(2)
2.4.3 Functional Assignments in Structural Genomics
30(2)
2.4.4 Protein-Protein Interactions
32(2)
2.4.5 Protein-Ligand Interactions
34(3)
2.5 Using Structural Bioinformatics Approaches in Drug Design
37(2)
2.6 The Future
39(1)
2.6.1 Integration over Multiple Resources
39(1)
2.6.2 The Impact of Structural Genomics
39(1)
2.6.3 The Role of Structural Bioinformatics in Systems Biology
39(1)
References
40(5)
3 Database Warehousing in Bioinformatics
45(18)
3.1 Introduction
45(3)
3.2 Bioinformatics Data
48(3)
3.3 Transforming Data to Knowledge
51(3)
3.4 Data Warehousing
54(2)
3.5 Data Warehouse Architecture
56(2)
3.6 Data Quality
58(2)
3.7 Concluding Remarks
60(1)
References
61(2)
4 Data Mining for Bioinformatics
63(54)
4.1 Introduction
63(1)
4.2 Biomedical Data Analysis
64(7)
4.2.1 Major Nucleotide Sequence Database, Protein Sequence Database, and Gene Expression Database
65(3)
4.2.2 Software Tools for Bioinformatics Research
68(3)
4.3 DNA Data Analysis
71(21)
4.3.1 DNA Sequence
71(5)
4.3.2 DNA Data Analysis
76(16)
4.4 Protein Data Analysis
92(17)
4.4.1 Protein and Amino Acid Sequence
92(7)
4.4.2 Protein Data Analysis
99(10)
References
109(8)
5 Machine Learning in Bioinformatics
117(38)
5.1 Introduction
117(3)
5.2 Artificial Neural Network
120(8)
5.3 Neural Network Architectures and Applications
128(7)
5.3.1 Neural Network Architecture
128(3)
5.3.2 Neural Network Learning Algorithms
131(3)
5.3.3 Neural Network Applications in Bioinformatics
134(1)
5.4 Genetic Algorithm
135(6)
5.5 Fuzzy System
141(6)
References
147(8)
6 Systems Biotechnology: a New Paradigm in Biotechnology Development
155(24)
6.1 Introduction
155(1)
6.2 Why Systems Biotechnology?
156(2)
6.3 Tools for Systems Biotechnology
158(6)
6.3.1 Genome Analyses
158(1)
6.3.2 Transcriptome Analyses
159(2)
6.3.3 Proteome Analyses
161(2)
6.3.4 Metabolome/Fluxome Analyses
163(1)
6.4 Integrative Approaches
164(2)
6.5 In Silico Modeling and Simulation of Cellular Processes
166(4)
6.5.1 Statistical Modeling
167(2)
6.5.2 Dynamic Modeling
169(1)
6.6 Conclusion
170(1)
References
171(8)
7 Computational Modeling of Biological Processes with Petri Net-Based Architecture
179(64)
7.1 Introduction
179(4)
7.2 Hybrid Petri Net and Hybrid Dynamic Net
183(7)
7.3 Hybrid Functional Petri Net
190(1)
7.4 Hybrid Functional Petri Net with Extension
191(7)
7.4.1 Definitions
191(6)
7.4.2 Relationships with Other Petri Nets
197(1)
7.4.3 Implementation of HFPNe in Genomic Object Net
198(1)
7.5 Modeling of Biological Processes with HFPNe
198(13)
7.5.1 From DNA to mRNA in Eucaryotes - Alternative Splicing
199(4)
7.5.2 Translation of mRNA - Frameshift
203(1)
7.5.3 Huntington's Disease
203(4)
7.5.4 Protein Modification - p53
207(4)
7.6 Related Works with HFPNe
211(1)
7.7 Genomic Object Net: GON
212(12)
7.7.1 GON Features That Derived from HFPNe Features
214(1)
7.7.2 GON GUI and Other Features
214(6)
7.7.3 GONML and Related Works with GONML
220(2)
7.7.4 Related Works with GON
222(2)
7.8 Visualizer
224(9)
7.8.1 Bio-processes on Visualizer
226(5)
7.8.2 Related Works with Visualizer
231(2)
7.9 BPE
233(3)
7.10 Conclusion
236(1)
References
236(7)
8 Biological Sequence Assembly and Alignment
243(20)
8.1 Introduction
243(2)
8.2 Large-Scale Sequence Assembly
245(9)
8.2.1 Related Research
245(4)
8.2.2 Euler Sequence Assembly
249(1)
8.2.3 PESA Sequence Assembly Algorithm
249(5)
8.3 Large-Scale Pairwise Sequence Alignment
254(3)
8.3.1 Pairwise Sequence Alignment
254(2)
8.3.2 Large Smith-Waterman Pairwise Sequence Alignment
256(1)
8.4 Large-Scale Multiple Sequence Alignment
257(2)
8.4.1 Multiple Sequence Alignment
257(1)
8.4.2 Large-Scale Clustal W Multiple Sequence Alignment
258(1)
8.5 Load Balancing and Communication Overhead
259(1)
8.6 Conclusion
259(1)
References
260(3)
9 Modeling for Bioinformatics
263(36)
9.1 Introduction
263(1)
9.2 Hidden Markov Modeling for Biological Data Analysis
264(17)
9.2.1 Hidden Markov Modeling for Sequence Identification
264(9)
9.2.2 Hidden Markov Modeling for Sequence Classification
273(5)
9.2.3 Hidden Markov Modeling for Multiple Alignment Generation
278(2)
9.2.4 Conclusion
280(1)
9.3 Comparative Modeling
281(6)
9.3.1 Protein Comparative Modeling
281(3)
9.3.2 Comparative Genomic Modeling
284(3)
9.4 Probabilistic Modeling
287(3)
9.4.1 Bayesian Networks
287(1)
9.4.2 Stochastic Context-Free Grammars
288(1)
9.4.3 Probabilistic Boolean Networks
288(2)
9.5 Molecular Modeling
290(7)
9.5.1 Molecular and Related Visualization Applications
290(4)
9.5.2 Molecular Mechanics
294(1)
9.5.3 Modern Computer Programs for Molecular Modeling
295(2)
References
297(2)
10 Pattern Matching for Motifs 299(14)
10.1 Introduction
299(2)
10.2 Gene Regulation
301(2)
10.2.1 Promoter Organization
302(1)
10.3 Motif Recognition
303(2)
10.4 Motif Detection Strategies
305(2)
10.4.1 Multi-genes, Single Species Approach
306(1)
10.5 Single Gene, Multi-species Approach
307(2)
10.6 Multi-genes, Multi-species Approach
309(1)
10.7 Summary
309(1)
References
310(3)
11 Visualization and Fractal Analysis of Biological Sequences 313(40)
11.1 Introduction
313(4)
11.2 Fractal Analysis
317(6)
11.2.1 What Is a Fractal?
317(2)
11.2.2 Recurrent Iterated Function System Model
319(1)
11.2.3 Moment Method to Estimate the Parameters of the IFS (RIFS) Model
320(1)
11.2.4 Multifractal Analysis
321(2)
11.3 DNA Walk Models
323(2)
11.3.1 One-Dimensional DNA Walk
323(1)
11.3.2 Two-Dimensional DNA Walk
324(1)
11.3.3 Higher-Dimensional DNA Walk
325(1)
11.4 Chaos Game Representation of Biological Sequences
325(5)
11.4.1 Chaos Game Representation of DNA Sequences
325(1)
11.4.2 Chaos Game Representation of Protein Sequences
326(1)
11.4.3 Chaos Game Representation of Protein Structures
326(1)
11.4.4 Chaos Game Representation of Amino Acid Sequences Based on the Detailed HP Model
327(3)
11.5 Two-Dimensional Portrait Representation of DNA Sequences
330(5)
11.5.1 Graphical Representation of Counters
330(2)
11.5.2 Fractal Dimension of the Fractal Set for a Given Tag
332(3)
11.6 One-Dimensional Measure Representation of Biological Sequences
335(13)
11.6.1 Measure Representation of Complete Genomes
335(5)
11.6.2 Measure Representation of Linked Protein Sequences
340(4)
11.6.3 Measure Representation of Protein Sequences Based on Detailed HP Model
344(4)
References
348(5)
12 Microarray Data Analysis 353(36)
12.1 Introduction
353(1)
12.2 Microarray Technology for Genome Expression Study
354(2)
12.3 Image Analysis for Data Extraction
356(7)
12.3.1 Image Preprocessing
357(2)
12.3.2 Block Segmentation
359(1)
12.3.3 Automatic Gridding
360(1)
12.3.4 Spot Extraction
360(1)
12.3.5 Background Correction, Data Normalization and Filtering, and Missing Value Estimation
361(2)
12.4 Data Analysis for Pattern Discovery
363(21)
12.4.1 Cluster Analysis
363(8)
12.4.2 Temporal Expression Profile Analysis and Gene Regulation
371(11)
12.4.3 Gene Regulatory Network Analysis
382(2)
References
384(5)
Index 389


Professor Yi-Ping Phoebe Chen is Professor and Chair & Head of Department at the Department of Computer Science and Computer Engineering, La Trobe University, Melbourne Australia. Prof Chen is the Chief Investigator of ARC Centre of Excellence in Bioinformatics from 2003-2010. Phoebe received her BInfTech degree with First Class Honours and PhD in Computer Science (Bioinformatics) from the University of Queensland. Before she joined La Trobe, Phoebe was Associate Professor (Reader) in Deakin University from Dec 2003 to April 2010. She worked as a Associate Lecturer/Lecturer/Senior Lecturer in Queensland University of Technology from Jul 1999 to Nov 2003.

She is currently working on knowledge discovery technologies and is especially interested in their application to genomics and biomedical science. Her research focus is to find best solutions for mining, integrating and analyzing complex data structure and functions for scientific and biomedical applications. She has been working in the area of bioinformatics, health informatics, multimedia databases, query system and systems biology, co-authored over 150 research papers with many published in top journals and conferences such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Information Technology in Biomedicine, Nucleic Acids Research, BMC Genomics, BMC Bioinformatics, Current Drug Metabolism, Data Mining and Knowledge Discovery, IEEE Transactions on Knowledge and Data Engineering, Information Systems and ACM Transactions.

She is steering committee chair of Asia-Pacific Bioinformatics Conference (founder) and International conference on Multimedia Modelling. She has been on the program committees of over 100 international conferences, including top ranking conferences such as ICDE, ICPR, ISMB, CIKM etc. Phoebe is a senior member of IEEE, member of ACM.