Muutke küpsiste eelistusi

E-raamat: Biomaterials: A Basic Introduction

(Monash University, Clayton, Victoria, Australia), (Monash University, Australia)
  • Formaat: 736 pages
  • Ilmumisaeg: 15-Dec-2014
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781482227703
  • Formaat - PDF+DRM
  • Hind: 76,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 736 pages
  • Ilmumisaeg: 15-Dec-2014
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781482227703

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Explores Biomedical Science from a Unique Perspective

Biomaterials: A Basic Introduction is a definitive resource for students entering biomedical or bioengineering disciplines. This text offers a detailed exploration of engineering and materials science, and examines the boundary and relationship between the two. Based on the authors course lecture notes and many years of research, it presents students with the knowledge needed to select and design biomaterials used in medical devices. Placing special emphasis on metallic, ceramic, polymeric, and composite biomaterials, it explains the difference between materials science and materials engineering, introduces basic concepts and principles, and analyzes the critically important properties of biomaterials.

Explains Complex Theories Using Aspects of Daily Life

This text provides an appropriate balance between depth and broadness of coverage, and offers an understanding of the most important concepts and principles to students from a wide academic spectrum. It delivers the science of biomaterials in laymen terms, from a material standpoint, as well as a clinical applications point of view. It equips students majoring in materials science/engineering with knowledge on the fundamentals of how biomaterials behave at a biological level, and provides students majoring in medicine with information that is generally unavailable in traditional medical courses. The authors incorporate learning objectives at the beginning of each chapter, as well as chapter highlights, problems, and exercises at the end of each chapter. In addition, they present objectives, suggested activities, and reference material for further reading.





Contains an overview of medical science vis-à-vis materials science, describes anatomy, histology, and cell biology Highlights health issues and diseases where biomaterials can easily find medical applications Presents knowledge of the relationship between the biomaterials and the living body Evaluates medical devices and looks into their respective regulations

Biomaterials: A Basic Introduction contains an overview of basic biomaterials and concepts, and is written for upper-division students in the US/Canada, and second-level students in universities worldwide.

Arvustused

"Very comprehensive The text is easy to read and ideal as an introductory text." Anthony McGoron, Florida International University, Miami, USA

"This textbook provides a logically structured approach to understanding biomaterial applications. The diagrams, pictures, and examples allow the reader to easily understand this complex topic." Peter Wawrow, St. Clair College, Windsor, Ontario, Canada

"This book is the most complete and thorough textbook on biomaterials I have had the chance to evaluate/read. It covers the basics of materials science and provide important insights on all the aspects relevant to the biomaterials field. Topics are presented and described in an accessible fashion, making this piece of work a valuable textbook for undergraduate (but also graduate) courses." Fabio Variola, University of Ottawa, Ontario, Canada

Preface xxiii
Acknowledgments xxvii
Authors xxix
PART I Biomaterials Science
Chapter 1 Biomaterials Science and Engineering
3(24)
Learning Objectives
3(1)
1.1 Materials Science and Engineering
3(1)
1.2 Multilevel of Structure and Categorization of Materials
4(5)
1.3 Four Categories of Materials
9(9)
1.3.1 Metallics
9(2)
1.3.2 Ceramics
11(2)
1.3.3 Polymers
13(2)
1.3.4 Composites
15(3)
1.4 Definitions of Biomaterials, Biomedical Materials, and Biological Materials
18(2)
1.5 Biocompatibility
20(3)
1.6
Chapter Highlights
23(4)
Activities
23(1)
Simple Questions in Class
24(1)
Problems and Exercises
24(1)
Bibliography
25(2)
Chapter 2 Toxicity and Corrosion
27(36)
Learning Objectives
27(1)
2.1 Elements in the Body
27(2)
2.2 Biological Roles and Toxicities of Trace Elements
29(1)
2.3 Selection of Metallic Elements in Medical-Grade Alloys
30(3)
2.4 Corrosion of Metals
33(8)
2.4.1 Why Do Metals Corrode?
33(1)
2.4.2 Corrosion Tendencies of Dissimilar Metals: Electrode Potentials
34(2)
2.4.3 Factors Affecting Electrode Potentials
36(1)
2.4.4 Galvanic Corrosion
37(1)
2.4.5 Corrosion Possibility of a Metal under Different Conditions: Pourbaix Diagrams
38(3)
2.5 Environment inside the Body
41(1)
2.6 Minimization of Toxicity of Metal Implants
42(1)
2.7
Chapter Highlights
43(20)
Laboratory Practice 1
43(1)
Simple Questions in Class
43(1)
Problems and Exercises
44(2)
Advanced Topic: Biological Roles of Alloying Elements
46(8)
Bibliography
54(9)
Chapter 3 Mechanical Properties of Biomaterials
63(24)
Learning Objectives
63(1)
3.1 Role of Implant Biomaterials
63(1)
3.2 Mechanical Properties of General Importance
64(1)
3.3 Hardness
65(3)
3.4 Elasticity: Resilience and Stretchability
68(1)
3.5 Mechanical Properties Terms Used in the Medical Community
69(1)
3.6 Failure
69(7)
3.6.1 Fatigue
69(3)
3.6.2 Stress Corrosion Cracking
72(4)
3.7 Essential Mechanical Properties of Orthopedic Implant Biomaterials
76(4)
3.7.1 Mechanical Working Environments of Implants in the Body
76(1)
3.7.1.1 Fatigue
76(1)
3.7.1.2 Fretting Fatigue and Corrosion Fretting Fatigue
77(1)
3.7.2 Wear of Joints
78(2)
3.7.3 Osseo-Integration
80(1)
3.8
Chapter Highlights
80(7)
Activities
81(1)
Simple Questions in Class
82(1)
Problems and Exercises
82(2)
Bibliography
84(3)
Chapter 4 Metallic Biomaterials in Orthopedic Implants
87(44)
Learning Objectives
87(1)
4.1 Development of Metallic Biomaterials
87(2)
4.2 Stainless Steels
89(16)
4.2.1 Corrosion Resistance of Stainless Steels
91(1)
4.2.1.1 Chromium (Passivity)
91(1)
4.2.1.2 Nickel (Passivity and FCC Structure Formation)
92(1)
4.2.1.3 Molybdenum (Carbide Formation and Minimization of Pitting Corrosion)
93(1)
4.2.1.4 Nitrogen (Enhance Resistance to Pitting and Crevice Corrosion)
93(1)
4.2.1.5 Metallurgical Processing Routes That Enhance Corrosion Resistance
94(1)
4.2.1.6 Stress Corrosion Cracking
94(1)
4.2.1.7 Summary
94(1)
4.2.2 Biocompatibility of Stainless Steels
95(1)
4.2.3 Mechanical Properties of Implant-Grade Stainless Steels
96(1)
4.2.4 Application Principles of Stainless Steels in Orthopedics
96(3)
4.2.5 Critical-Sized Defects
99(4)
4.2.6 Current Issues and Challenges
103(2)
4.3 Cobalt-Based Alloys
105(7)
4.3.1 Corrosion Resistance of Cobalt--Chromium Alloys
105(1)
4.3.2 Biocompatibility of Cobalt Alloys
106(1)
4.3.3 Mechanical Properties of Medical-Grade Cobalt Alloys
107(2)
4.3.4 Medical Applications of Cobalt Alloys
109(1)
4.3.5 Current Issues and Challenges
110(1)
4.3.6 Summary
111(1)
4.4 Titanium Alloys
112(9)
4.4.1 Corrosion Resistance of Titanium and Its Alloys
112(1)
4.4.2 Biocompatibility of Titanium Alloys
113(1)
4.4.3 Bone-Bonding Ability of Ti and Ti Alloys
113(1)
4.4.4 Mechanical Properties of Titanium Alloys
114(1)
4.4.4.1 Commercial Pure Titanium
114(2)
4.4.4.2 α--β Titanium Alloys
116(1)
4.4.4.3 β Titanium Alloys
116(2)
4.4.5 Wear Resistance
118(1)
4.4.6 Clinical Applications of Titanium Alloys
119(1)
4.4.7 Current Issues and Challenges
120(1)
4.4.8 Summary of Titanium Alloys
121(1)
4.5 Comparison of Stainless Steels, Cobalt, and Titanium Alloys
121(3)
4.6 Summary and Remarks
124(1)
4.7
Chapter Highlights
124(7)
Activities
125(1)
Simple Questions in Class
125(1)
Problems and Exercises
126(2)
Bibliography
128(3)
Chapter 5 Metallic Biomaterials: Miscellaneous Others
131(31)
Learning Objectives
131(1)
5.1 Dental Materials
131(9)
5.1.1 HgAgSn Amalgam as Tooth Fillings
135(1)
5.1.1.1 Corrosion Resistance of Amalgam
135(1)
5.1.1.2 Special Requirements of Tooth Fillings
136(1)
5.1.1.3 Properties of HgAgSn Amalgam
136(1)
5.1.2 Noble Metals
137(1)
5.1.2.1 Corrosion Resistance
137(1)
5.1.2.2 Alloying Composition and Properties
137(1)
5.1.2.3 Dental Applications of Noble Alloys
137(3)
5.2 NiTi Shape-Memory Alloys
140(11)
5.2.1 Mechanism of the Shape-Memory Effect
140(2)
5.2.1.1 One-Way Shape-Memory Effect
142(2)
5.2.1.2 Two-Way Shape-Memory Effect
144(1)
5.2.2 Corrosion of NiTi Alloys
144(1)
5.2.3 Biocompatibility of NiTi Alloys
144(1)
5.2.3.1 In Vitro Evaluation
144(1)
5.2.3.2 In Vivo Evaluation in Animals
144(1)
5.2.3.3 In Vivo Trials of NiTi Implants in Humans
145(1)
5.2.3.4 Biocompatibility of NiTi Wires as Stents (Filters)
145(1)
5.2.4 Mechanical Properties of NiTi Alloys
145(1)
5.2.4.1 General Mechanical Properties
145(1)
5.2.4.2 Fatigue Properties of NiTi Alloys
146(1)
5.2.5 Medical Applications of NiTi Alloys
146(1)
5.2.5.1 Cardiovascular Applications of Self-Expandable Stents
146(1)
5.2.5.2 Gastrointestinal Applications of Self-Expandable Stents
147(1)
5.2.5.3 Urological and Other Applications of Self-Expandable Stents
148(1)
5.2.5.4 Orthopedic and Orthodontic Applications of NiTi Implants
148(2)
5.2.6 Issues and Challenges of NiTi Implants
150(1)
5.2.7 Summary
150(1)
5.3 Other Clinically Applied Metallic Materials
151(3)
5.3.1 Tantalum
151(1)
5.3.1.1 Corrosion and Biocompatibility of Tantalum
151(1)
5.3.1.2 Clinical Applications of Tantalum
151(1)
5.3.2 Zirconium Alloys
151(1)
5.3.2.1 Corrosion and Biocompatibility of Zirconium
151(2)
5.3.2.2 Clinical Application of Zirconium Alloy
153(1)
5.3.3 Silver
153(1)
5.3.3.1 Biocompatibility of Silver
153(1)
5.3.3.2 Medical Application of Ag
153(1)
5.3.4 Metals Used as Medical Electrodes
154(1)
5.4 New Metallic Materials: Magnesium Alloys
154(7)
5.4.1 Three Generations of Biomaterials in Terms of Degradability
154(1)
5.4.2 Rationale of Developing Mg Alloys as Medical Implants
155(1)
5.4.3 Corrosion of Mg Alloys
155(2)
5.4.4 Biocompatibility/Toxicity of Mg Alloys
157(2)
5.4.5 Mechanical Properties of Mg Alloys
159(1)
5.4.5.1 Mg--Zn-Based Alloys
160(1)
5.4.5.2 Mg--Ca-Based Alloys
160(1)
5.4.6 Potential Applications of Magnesium Alloys and Challenges
160(1)
5.4.7 Summary
160(1)
5.5
Chapter Highlights
161(1)
Laboratory Practice 2
161(1)
5.A Appendix Data on Corrosion Resistance and Biocompatibility of Niti Alloys
162(23)
Simple Questions in Class
175(1)
Problems and Exercises
176(3)
Bibliography
179(6)
Chapter 6 Bioinert Ceramics
185(28)
Learning Objectives
185(1)
6.1 Overview of Bioceramics
185(3)
6.1.1 Classification of Bioceramics
185(1)
6.1.2 Three Generations of Bioceramics
186(1)
6.1.3 Mechanical Sensitivity of Ceramics to Stress Concentration
187(1)
6.2 Inert Bioceramics: Al2O3
188(5)
6.2.1 Corrosion Resistance and Biocompatibility
188(1)
6.2.2 Mechanical Properties
188(1)
6.2.3 Medical Applications of Al2O3
189(2)
6.2.4 Strategies to Minimize the Wear of Bearing Surfaces
191(2)
6.2.5 Other Applications of Al2O3 as an Implant Material
193(1)
6.3 Inert Bioceramics: ZrO2
193(1)
6.4 Two Types of Joints
194(1)
6.5 Summary and Remarks on Al2O3 and ZrO2
195(1)
6.6 Dental Ceramics
196(3)
6.6.1 Dental Implant Ceramics
196(1)
6.6.2 Dental Porcelains
197(2)
6.7
Chapter Highlights
199(14)
Activities
199(1)
Simple Questions in Class
200(1)
Problems and Exercises
201(1)
Advanced Topic: Total Joint Replacement
202(7)
Bibliography
209(4)
Chapter 7 Bioactive and Bioresorbable Ceramics
213(44)
Learning Objectives
213(1)
7.1 Overview of Surface Bioactive and Bulk Degradable Ceramics
213(1)
7.2 Calcium Phosphates and Hydroxyapatite
214(4)
7.2.1 Calcium Phosphate
214(1)
7.2.2 Apatite
214(1)
7.2.3 Bone Minerals (Biological Apatite)
214(1)
7.2.4 Biocompatibility of Synthetic Calcium Phosphates and Hydroxyapatite
215(1)
7.2.5 Stability of Synthetic Calcium Phosphates and Hydroxyapatites in Physiological Solutions
216(1)
7.2.6 Mechanical Properties of Synthetic Calcium Phosphates and Hydroxyapatite
217(1)
7.2.7 Applications of Synthetic Calcium Phosphates and Hydroxyapatites as Implant Materials
217(1)
7.3 Bioactive Glasses
218(4)
7.3.1 Bioactive Silicate Glasses
218(1)
7.3.1.1 Composition and Biodegradability of Bioactive Silicate Glasses
218(2)
7.3.1.2 Biocompatibility of Bioactive Silicate Glasses
220(1)
7.3.1.3 Mechanical Properties
220(1)
7.3.1.4 Medical Applications of Bioactive Glasses
221(1)
7.4 Bioactive Glass-Ceramics
222(1)
7.4.1 A--W Glass-Ceramic
222(1)
7.4.2 Ceravital® Glass-Ceramics
223(1)
7.4.3 Bioverit® Glass-Ceramics
223(1)
7.5 Bone-Bonding Mechanisms
223(6)
7.6 Biodegradable Ceramics
229(3)
7.6.1 Biodegradation Mechanisms of Amorphous Structures
230(1)
7.6.2 Biodegradation Mechanisms of Crystalline Structures
230(1)
7.6.3 Design of Degradation Kinetics of Degradable Biomaterials
230(2)
7.6.4 How to Tune Bioactivity and Degradation Kinetics of Bioceramics
232(1)
7.7
Chapter Highlights
232(25)
Laboratory Practice 3
234(1)
Simple Questions in Class
234(1)
Problems and Exercises
235(1)
Advanced Topic: Bioceramic Scaffolds for Bone Tissue Engineering
236(15)
Bibliography
251(6)
Chapter 8 Polymeric Biomaterials: Fundamentals
257(38)
Learning Objectives
257(1)
8.1 Basic Concepts on Polymers
257(18)
8.1.1 What Are Polymers?
258(3)
8.1.2 Simplified Illustration of Molecular Structures of Polymers
261(1)
8.1.3 Why Many Polymers Are Flexible?
261(2)
8.1.4 Classification of Homo- and Copolymers
263(1)
8.1.5 Classification of Skeletal Structures
264(1)
8.1.5.1 Linear or Branched Chain Structures: Thermoplastic Polymers
265(1)
8.1.5.2 Cross-Linked (Elastomeric) or Networked (Rigid) Structures: Thermoset Polymers
265(1)
8.1.6 Phase Separation of Polymers
266(1)
8.1.6.1 Crystallinity of Polymers
266(1)
8.1.6.2 Segmented Copolymers
266(1)
8.1.7 Molar Mass (Molecular Weight) of Polymers
267(1)
8.1.8 Mechanical Properties of Polymers
267(1)
8.1.8.1 Thermoplastics
267(2)
8.1.8.2 Thermoset Elastomers
269(1)
8.1.8.3 Thermoplastic Rubbers
270(1)
8.1.8.4 Thermoset Resins
270(2)
8.1.9 Strategies to Strengthen/Harden Polymers
272(1)
8.1.10 Synthesis of Polymers
272(2)
8.1.11 Hydrolysis and Chemical Design Principles of Medical Polymers
274(1)
8.2 Overview of Polymeric Biomaterials
275(1)
8.2.1 Classification
275(1)
8.2.2 How to Adjust Degradability of Polymers
275(1)
8.3
Chapter Highlights
276(19)
Activities
277(1)
Simple Questions in Class
277(2)
Problems and Exercises
279(1)
Advanced Topic: Polymers and Polymer Scaffolds for Soft Tissue Engineering
280(10)
Bibliography
290(5)
Chapter 9 Bioinert Polymers
295(44)
Learning Objectives
295(1)
9.1 Polyolefin
295(4)
9.1.1 Polyethylene
295(1)
9.1.2 Polypropylene
296(3)
9.2 Poly(Ethylene Terephthalate)
299(1)
9.3 Acrylate Polymer
300(3)
9.4 Fluorocarbon Polymers
303(3)
9.5 Silicone
306(2)
9.6 Polyurethane
308(4)
9.6.1 Polymer Chemistry of Polyurethanes
308(1)
9.6.2 Third Component in PU Synthesis: The Chain Extender
309(2)
9.6.3 Properties and Medicinal Applications of PUs
311(1)
9.7
Chapter Highlights
312(27)
Activities
313(1)
Simple Questions in Class
313(1)
Problems and Exercises
314(1)
Advanced Topic: Properties and Applications of Polyurethane as Biomaterials
315(17)
Bibliography
332(7)
Chapter 10 Bioresorbable Polymers
339(46)
Learning Objectives
339(1)
10.1 Biodegradation of Polymers
339(4)
10.1.1 Degradation of Polymers
339(1)
10.1.2 General Process of Polymer Biodegradation
340(1)
10.1.3 Cleavage of Polymer Chains
341(1)
10.1.3.1 Hydrolyzable Polymers
341(2)
10.2 Polyesters: PGA, PLA, and PCL
343(4)
10.2.1 Esters
343(1)
10.2.2 Synthesis of PGA, PLA, and PCL
344(1)
10.2.3 Properties of PGA, PLA, and PCL
345(1)
10.2.4 Degradation of Polyesters
345(2)
10.2.5 Biocompatibility of Polyesters
347(1)
10.2.6 Biomedical Applications of PGA, PLA, and PCL
347(1)
10.3 Polyesters: PHA
347(3)
10.3.1 Synthesis of PHAs
347(1)
10.3.2 Biocompatibility of PHAs
347(2)
10.3.3 Biodegradation Rates
349(1)
10.3.4 Properties of PHAs
349(1)
10.3.5 Medical Applications of PHAs
349(1)
10.4 Elastomeric Polyester: Poly(Polyol Sebacate)
350(4)
10.4.1 Synthesis of Poly(Polyol Sebacate)
350(1)
10.4.2 Biodegradation and Biocompatibility of PPS
351(1)
10.4.3 Mechanical Properties of PPS Polymers
351(1)
10.4.4 Stress--Strain Curves of Synthetic and Biological Elastomers
352(2)
10.5 Polyether: Poly(Ethylene Glycol)
354(1)
10.5.1 Synthesis of PEG
354(1)
10.5.2 Applications of PEG
354(1)
10.6 Polyamide
354(1)
10.6.1 Synthesis of Polyamides
354(1)
10.6.2 Stability of Peptide Bonds in Aqueous Solution at pH 7
355(1)
10.7 Surface-Erodible Polymers
355(1)
10.8 Biological Polymers
356(1)
10.9
Chapter Highlights
356(29)
Simple Questions in Class
357(1)
Problems and Exercises
358(1)
Laboratory Practice 4
359(1)
Advanced Topic: Natural Polymers: Resilin, Silk, and Gluten
360(18)
Bibliography
378(7)
Chapter 11 Composite Biomaterials
385(26)
Learning Objectives
385(1)
11.1 Overview of Composites
385(6)
11.1.1 Definition of Composites
386(1)
11.1.2 Classification of Composites
387(1)
11.1.3 General Structure--Property Relationship
388(1)
11.1.3.1 Effects of Shape
388(1)
11.1.3.2 Volume Fraction of a Composite
388(2)
11.1.3.3 Effect of Volume Fraction: The Concept of Load Transfer
390(1)
11.1.3.4 Prediction of Elastic Properties of Composites
390(1)
11.1.3.5 Interface Bonding
391(1)
11.2 Natural Composites: Bone
391(4)
11.2.1 Constituents of Bone, Dentin, and Enamel (Human)
392(1)
11.2.1.1 Inorganic Constituents of Bone
392(1)
11.2.1.2 Organic Constituents of Bone
393(1)
11.2.1.3 Constituents of Dentine and Enamel
393(1)
11.2.2 Volume Fraction of Apatite in Bone, Dentin, and Enamel
393(1)
11.2.3 Prediction of Stiffness of Bone, Dentin, and Enamel
393(2)
11.3 Dental Composites
395(2)
11.3.1 Management of Shrinkage
395(1)
11.3.2 Glass--Ionomer Cement
396(1)
11.4 Artificial Bone
397(1)
11.5
Chapter Highlights
398(13)
Laboratory Practice 5
399(1)
Simple Questions in Class
399(1)
Problems and Exercises
400(1)
Advanced Topic: Development of Artificial Bone: Composites and Scaffolds
401(4)
Bibliography
405(6)
PART II Medical Science
Chapter 12 Medicine and Medical Science
411(14)
Learning Objectives
411(1)
12.1 Medicine and Medical Science
411(1)
12.2 Medical Science versus Materials Science
412(4)
12.3 Learning Goals of Part II
416(1)
12.4
Chapter Highlights
417(8)
Activity
418(1)
Bibliography
418(2)
Image Links
420(3)
Simple Questions in Class
423(1)
Problems and Exercises
423(2)
Chapter 13 Human Anatomy and Diseases I: Integumentary, Skeletal, Muscular, Nervous, and Endocrine Systems
425(34)
Learning Objectives
425(1)
13.1 Integumentary System
425(4)
13.1.1 Gross Anatomy of Skin
425(1)
13.1.2 Functions of Skin
426(1)
13.1.3 Regenerative Ability of the Skin and Stem Cells
427(1)
13.1.4 Threatening Skin Injury: Burns
427(2)
13.1.5 Applications of Biomaterials in Full-Thickness Burns
429(1)
13.2 Skeletal System
429(7)
13.2.1 Gross Anatomy of Skeleton
429(1)
13.2.1.1 Two Subskeletons
429(1)
13.2.1.2 Types of Bones
430(1)
13.2.1.3 Gross Structure of an Individual Long Bone
430(1)
13.2.1.4 Articulations and Articular Cartilage
431(1)
13.2.2 Functions of Bone
431(1)
13.2.3 Development of Bone
432(1)
13.2.4 Regenerative Capacity of Bone
432(3)
13.2.5 The Most Common Bone Disease: Osteoporosis
435(1)
13.2.6 Applications of Biomaterials in Skeleton System
436(1)
13.3 Muscular System
436(4)
13.3.1 Gross Anatomy of Muscle
436(1)
13.3.2 Skeletal Muscle
437(1)
13.3.3 Cardiac Muscle
438(1)
13.3.4 Smooth (Visceral) Muscle
438(2)
13.3.5 Regenerative Ability and Cancer Susceptibility
440(1)
13.4 Nervous System
440(7)
13.4.1 Gross Anatomy of the Nervous System
440(3)
13.4.2 Regenerative Capacity of the PNS and CNS
443(2)
13.4.3 Nerve Disorders: Degeneration of Brain
445(1)
13.4.4 Surgical Reconnection of PNS
445(1)
13.4.5 Application of Biomaterials and Challenges to Nerve Damage
445(1)
13.4.5.1 Nerve-Bridging Device
445(1)
13.4.5.2 Nonbiodegradable Artificial Nerve Grafts
446(1)
13.4.5.3 Neural Tissue Engineering: To Address Major PN Injuries
446(1)
13.4.5.4 Biomaterials for Drug or Cell Delivery
446(1)
13.5 Endocrine System
447(2)
13.5.1 Gross Anatomy of the Endocrine System
447(2)
13.5.2 Functions of the Endocrine System
449(1)
13.5.3 Cellular/Molecular Therapies and Application of Biomaterials
449(1)
13.6
Chapter Highlights
449(10)
Activities
450(1)
Simple Questions in Class
450(4)
Problems and Exercises
454(1)
Advanced Topic: Biomaterial Challenges in Bone Tissue Engineering
454(2)
Bibliography
456(3)
Chapter 14 Human Anatomy and Diseases II: Cardiovascular System
459(30)
Learning Objectives
459(1)
14.1 Anatomy and Functions of the Cardiovascular System
459(8)
14.1.1 Blood
460(1)
14.1.2 Heart
461(1)
14.1.3 Two Circuits
462(1)
14.1.4 Blood vessels
462(1)
14.1.4.1 Arteries, Veins, and Capillaries
462(3)
14.1.4.2 Aorta and Coronary Arteries of the Heart
465(2)
14.2 Cardiovascular Disease
467(5)
14.2.1 Coronary Artery Disease
468(1)
14.2.2 Brain Vessel Diseases
469(1)
14.2.3 Hypertensive Heart Disease
469(1)
14.2.4 Cardiomyopathy
469(2)
14.2.5 Acute Rheumatic Fever and Rheumatic Heart Disease
471(1)
14.2.6 Peripheral Vascular Disease
471(1)
14.2.7 Congenital Heart Disease
471(1)
14.3 Cardiac Performance: P--V Loop
472(1)
14.4 Current Therapies for Heart Disease
472(3)
14.5 Alternative Treatments and Application of Biomaterials
475(7)
14.5.1 Cardiomyoplasty
475(1)
14.5.2 Ventricular Restraint
476(2)
14.5.3 Stem Cell Therapy
478(1)
14.5.4 Combinatorial Approach: The Heart Patch
479(3)
14.6 Artificial Blood Vessels
482(1)
14.7
Chapter Highlights
482(7)
Activities
482(1)
Simple Questions in Class
483(2)
Problems and Exercises
485(1)
Bibliography
486(3)
Chapter 15 Human Anatomy and Diseases III: Respiratory, Lymphatic, Digestive, Urinary, and Reproductive Systems
489(30)
Learning Objectives
489(1)
15.1 Respiratory System
489(7)
15.1.1 Breathing and Respiration
489(1)
15.1.2 Gross Anatomy and Functions of the Respiratory System
490(1)
15.1.2.1 Nose, Pharynx, and Larynx (Upper Respiratory Tract)
491(1)
15.1.2.2 Trachea and Bronchi (Lower Respiratory Tract)
491(1)
15.1.3 Gross Structure and Functions of the Lungs
491(2)
15.1.4 Pneumocytes in Alveoli and the Regenerative Ability of Lungs
493(1)
15.1.5 Lung Disease: Emphysema
494(1)
15.1.6 New Strategy: Lung Volume Reduction Surgery
494(1)
15.1.7 Application of Biomaterials: Sealants and Bioartificial Trachea
494(2)
15.2 Lymphatic System
496(3)
15.2.1 Gross Anatomy of the Lymphatic System
496(1)
15.2.1.1 Lymphatic Organs (the Lymphoid System)
496(2)
15.2.2 Diseases of Lymphatic System
498(1)
15.2.3 Application of Biomaterials
498(1)
15.3 Digestive System
499(7)
15.3.1 Gross Anatomy of the Digestive System
499(1)
15.3.2 Digestion: General Biochemistry of Food Breakdown
500(1)
15.3.3 Functions of Organs of the Digestive System
501(1)
15.3.3.1 Oral Complex
501(1)
15.3.3.2 Pharynx and Esophagus
501(1)
15.3.3.3 Stomach
501(1)
15.3.3.4 Small Intestine
502(1)
15.3.3.5 Small Intestine--Associated Glands: Liver and the Pancreas
502(1)
15.3.3.6 Large Intestine
502(1)
15.3.3.7 Rectum, Anal Canal, and Anus
503(1)
15.3.4 Regenerative Ability of Organs of the Digestive System
503(1)
15.3.5 Digestive System Diseases
503(1)
15.3.5.1 Cancer and Short Gut Syndrome
503(1)
15.3.5.2 Progression of Liver Inflammation (Hepatitis)
504(1)
15.3.6 Application of Biomaterials
504(1)
15.3.6.1 Intestinal Substitutes
504(1)
15.3.6.2 Artificial Esophagus
504(2)
15.3.6.3 Liver Tissue Engineering
506(1)
15.4 Urinary System
506(5)
15.4.1 Gross Anatomy of the Urinary System
506(2)
15.4.2 Kidney
508(1)
15.4.3 Regeneration of Kidney (Living with One Kidney)
509(1)
15.4.4 Kidney Failure and Diabetes
509(2)
15.4.5 Application of Biomaterials
511(1)
15.5 Reproductive System
511(3)
15.5.1 Gross Anatomy of the Human Reproductive System
511(1)
15.5.1.1 Fertilization and Embryo Formation
512(1)
15.5.2 Diseases of the Reproductive System
513(1)
15.5.2.1 Infections of the Reproductive System
513(1)
15.5.2.2 Congenital Abnormalities
513(1)
15.5.2.3 Cancers
513(1)
15.5.3 Applications of Biomaterials
514(1)
15.6
Chapter Highlights
514(5)
Activities
514(1)
Simple Questions in Class
515(1)
Problems and Exercises
515(1)
Bibliography
516(3)
Chapter 16 Cells and Biomolecules
519(48)
Learning Objectives
519(1)
16.1 Introduction
519(1)
16.2 Cell Biochemistry and Biosynthesis
520(9)
16.2.1 Chemical Components of a Cell: Biomacromolecules
520(1)
16.2.1.1 Polysaccharides (Sugar and Starch)
520(2)
16.2.1.2 Lipids (Fats and Oily Substances)
522(1)
16.2.1.3 Proteins
522(3)
16.2.1.4 DNA and RNA
525(1)
16.2.2 Types of Biomolecular Bonding
525(1)
16.2.3 Biosynthesis and Metabolism: The Energy Balance of Cells
526(1)
16.2.3.1 Cell Metabolism
526(1)
16.2.3.2 Why Is a Constant Input of Energy Needed to Sustain Living Organisms?
526(1)
16.2.3.3 How Do Cells Obtain Energy?
527(1)
16.2.3.4 How Do Enzymes Find Their Substrates?
527(1)
16.2.3.5 How Do Cells Obtain Energy from Food?
528(1)
16.3 Cell Structure
529(4)
16.3.1 Structure of Cell Membrane
529(1)
16.3.1.1 Phospholipid Bilayer
529(1)
16.3.1.2 Receptors
529(1)
16.3.2 Nucleus, Cytoplasm, and Cytoskeleton
529(2)
16.3.2.1 Nucleus
531(2)
16.3.2.2 Cytoplasm
533(1)
16.3.2.3 Cytoskeleton
533(1)
16.4 Transport across Plasma Membranes
533(3)
16.4.1 Passive Diffusion
534(1)
16.4.2 Facilitated Diffusion
534(1)
16.4.3 Active Transport (against a Gradient)
535(1)
16.4.4 Bulk Transport across Plasma Membranes
535(1)
16.4.4.1 Pinocytosis and Receptor-Mediated Endocytosis
535(1)
16.4.4.2 Phagocytosis
536(1)
16.4.4.3 Phagocytes: Cells of the Cellular Defense System
536(1)
16.5 Cell Proliferation
536(5)
16.5.1 Cell Attachment
537(1)
16.5.2 Mitosis and the Cell Cycle
538(1)
16.5.3 Regeneration versus Cancer
538(1)
16.5.4 Cell Growth Curve
539(1)
16.5.5 Cell Aging (Senescence)
539(1)
16.5.6 Phenotype of Proliferating Cells
540(1)
16.5.7 Cell Death
540(1)
16.6 Cell Differentiation and Stem Cells
541(4)
16.6.1 Common Characteristics of Stem Cells
542(1)
16.6.2 Embryonic Stem Cells
542(1)
16.6.3 Potency of Stem Cells
542(1)
16.6.4 Adult (Somatic) Stem Cells
543(2)
16.7
Chapter Highlights
545(22)
Activities
546(1)
Advanced Topic: Cell Therapy to Treat Cardiac Disease
546(11)
Simple Questions in Class
557(2)
Problems and Exercises
559(1)
Bibliography
559(8)
Chapter 17 Histology and Tissue Properties I: Epithelial, Neuronal, and Muscle Tissue
567(42)
Learning Objectives
567(1)
17.1 Introduction
567(2)
17.1.1 Four Types of Tissues
568(1)
17.1.2 Tissue Composition and Basic Structure
569(1)
17.1.3 Regeneration and Carcinogenic Susceptibility of Tissues
569(1)
17.2 Epithelium
569(5)
17.2.1 Epithelial Cells
569(1)
17.2.2 Examples of Epithelia
570(1)
17.2.3 Endothelium
571(2)
17.2.3.1 Endothelium and Vascular Tissue Engineering
573(1)
17.3 Muscular Tissue
574(9)
17.3.1 Microanatomy of Muscle
574(1)
17.3.1.1 Skeletal Muscle
574(1)
17.3.1.2 Cardiac Muscle (Also Called Myocardium)
574(1)
17.3.1.3 Smooth Muscle
575(1)
17.3.2 Proteins in Muscle Cells and Muscle Contraction
575(1)
17.3.2.1 Skeletal Muscle
575(2)
17.3.2.2 Cardiac Muscle and Cardiomyocytes
577(2)
17.3.3 Mechanical Performance of Muscular Tissue
579(1)
17.3.4 Stress--Strain Relationships of Muscular Tissues
579(3)
17.3.5 Reproducing J-Shaped Mechanical Properties in Synthetic Materials
582(1)
17.4 Nervous Tissue
583(3)
17.4.1 Cellular Organization and Histology of Nervous Tissue
583(1)
17.4.1.1 Neurons
583(1)
17.4.1.2 Glial Cells
584(1)
17.4.2 Anatomy of Peripheral Nerve Fibers
585(1)
17.5
Chapter Highlights
586(23)
Activities
587(1)
Advanced Topic: Properties of Proteins in Mammalian Tissues
587(13)
Simple Questions in Class
600(2)
Problems and Exercises
602(1)
Bibliography
602(7)
Chapter 18 Histology and Tissue Properties II: Connective Tissues
609(26)
Learning Objectives
609(1)
18.1 Overview of Connective Tissues
609(1)
18.2 Types of Connective Tissue
610(1)
18.2.1 Connective Tissue Proper
610(1)
18.2.2 Connective Tissue with Specialized Properties
610(1)
18.2.3 Supporting Connective Tissue
610(1)
18.2.4 Embryonic Connective Tissue
611(1)
18.3 Connective Tissue Proper (Skin, Tendon, Ligament)
611(6)
18.3.1 Cells Present in Connective Tissue
611(1)
18.3.1.1 Fibroblasts and Fibrocytes
612(1)
18.3.1.2 Macrophages
612(1)
18.3.1.3 Mast Cells
613(1)
18.3.1.4 Plasma Cells
613(1)
18.3.1.5 Adipose Cells
613(1)
18.3.1.6 Leukocytes
613(1)
18.3.2 Acellular Components of Connective Tissue
614(1)
18.3.2.1 Nonfibrous Gel-Like Substance
614(1)
18.3.2.2 Tissue Fluid (Interstitial Fluid)
615(1)
18.3.3 Structural Protein Fibers
615(1)
18.3.3.1 Collagen
615(1)
18.3.3.2 Reticular Fibers (Reticulin)
616(1)
18.3.3.3 Elastic Fiber System
616(1)
18.4 Mechanical Properties of Structural Proteins
617(4)
18.4.1 Elasticity of Biological Tissues
617(1)
18.4.2 Mechanical Properties of Collagen
617(1)
18.4.2.1 Elasticity of Collagen
617(3)
18.4.3 Mechanical Properties of Elastin
620(1)
18.4.4 Resilience of Proteins
620(1)
18.5 Cartilage
621(4)
18.5.1 General Aspects of Anatomy and Function
621(1)
18.5.1.1 Hyaline Cartilage
621(1)
18.5.1.2 Elastic Cartilage
622(1)
18.5.1.3 Fibrocartilage
623(1)
18.5.2 Histology and Structural Aspects of Cartilage
623(1)
18.5.2.1 Extracellular Matrix of Cartilage
623(1)
18.5.2.2 Perichondrium
623(1)
18.5.2.3 Chondrocyte Growth in Cartilage
623(1)
18.5.3 Repair of Diseased or Damaged Cartilage
623(1)
18.5.3.1 Articular Cartilage Damage
624(1)
18.5.3.2 Current Clinical Treatments of Cartilage
624(1)
18.5.3.3 Total Joint Replacement
625(1)
18.5.3.4 Success of Cartilage Tissue Engineering
625(1)
18.6 Bone
625(4)
18.6.1 Bone Matrix
625(1)
18.6.1.1 Periosteum and Endosteum
626(1)
18.6.1.2 Types of Bone
626(2)
18.6.2 Cells in Bone
628(1)
18.6.2.1 Osteoblasts
628(1)
18.6.2.2 Osteoclasts
628(1)
18.6.2.3 Osteocytes
628(1)
18.6.2.4 Osteoprogenitor Cells
629(1)
18.6.3 Mechanical Properties of Bone
629(1)
18.6.4 Bone Growth and Regeneration
629(1)
18.7
Chapter Highlights
629(6)
Laboratory Practice 6
630(1)
Simple Questions in Class
630(2)
Problems and Exercises
632(1)
Bibliography
632(3)
Chapter 19 Immune System and Body Responses to Biomaterials
635(20)
Learning Objectives
635(1)
19.1 Immune System
635(7)
19.1.1 Cells of the Immune System
636(2)
19.1.2 Phagocytes
638(1)
19.1.2.1 Neutrophils
638(1)
19.1.2.2 Macrophages
638(1)
19.1.2.3 Dendritic Cells
638(1)
19.1.2.4 Mast Cells
638(1)
19.1.2.5 Eosinophils and Basopils
638(1)
19.1.3 Lymphocytes
639(1)
19.13.1 B-Cells (from Bone Marrow)
639(1)
19.1.3.2 T-Cells (Produced in the Thymus)
639(1)
19.1.3.3 Natural Killer Cells
640(2)
19.2 Tissue Response to Injuries
642(2)
19.2.1 Inflammation
642(1)
19.2.2 Remodeling Phase: Soft Tissue
643(1)
19.2.3 Remodeling Phase: Hard Tissue
643(1)
19.3 Body Response to Implants
644(4)
19.3.1 Local Tissue Responses
645(1)
19.3.1.1 Biointegration
645(1)
19.3.1.2 Encapsulation
645(1)
19.3.1.3 Foreign Body Effects
645(1)
19.3.1.4 pH Change at Implantation Sites
645(1)
19.3.1.5 Necrosis
646(1)
19.3.1.6 Local Carcinogenicity
646(1)
19.3.2 Local Tissue Responses to Different Materials
646(1)
19.3.3 Systemic Impact of Implants on the Body
646(1)
19.3.3.1 Metal and Trace Additive Allergy
647(1)
19.3.3.2 Carcinogenicity in Other Tissues
647(1)
19.3.4 Blood Compatibility
647(1)
19.3.4.1 Thrombogenicity
647(1)
19.3.4.2 Thromboresistance
648(1)
19.4
Chapter Highlights
648(7)
Activities
649(1)
Simple Questions in Class
649(1)
Problems and Exercises
650(1)
Bibliography
651(4)
PART III Evaluation and Regulation of Medical Devices
Chapter 20 Evaluation of Biomaterials
655(30)
Learning Objectives
655(1)
20.1 Overview of Biomaterials Evaluation
655(1)
20.1.1 Evaluation in the Context of Materials Science and Engineering
655(1)
20.1.2 Evaluation of Biomaterials in the Context of Biotechnology
655(1)
20.2 Standards
656(4)
20.2.1 What Are Standards?
656(2)
20.2.2 Major International Standardization Organizations
658(1)
20.2.2.1 Standards of Biomaterials Evaluation
659(1)
20.2.3 Reference Materials (Controls)
659(1)
20.2.3.1 Blood--Material Interaction Studies
659(1)
20.2.4 Sterilization Practices
660(1)
20.2.4.1 Choice of Sterilization Methods
660(1)
20.3 Toxicological Evaluation
660(5)
20.3.1 Scheduling of Testing
661(1)
20.3.2 Causes of Toxicity Problems
661(1)
20.3.2.1 Leaching from Polymers
662(1)
20.3.2.2 Sterilization by-products
662(1)
20.3.2.3 Drug--Plastic Interactions
662(1)
20.3.2.4 Biodegradation and/or Biotransformation of Materials
662(1)
20.3.2.5 Physical Contact
663(1)
20.3.3 Toxicity Test Methods
663(1)
20.3.3.1 Cytotoxicity
663(1)
20.3.3.2 Sensitization
663(1)
20.3.3.3 Tissue Reactivity after Irritation or Intracutaneous Injection
663(1)
20.3.3.4 Acute Systemic Toxicity
664(1)
20.3.3.5 Subchronic Toxicity
664(1)
20.3.3.6 Genotoxicity
664(1)
20.3.3.7 Implantation
664(1)
20.3.3.8 Hemocompatibility
664(1)
20.3.3.9 Chronic Toxicity
664(1)
20.3.3.10 Carcinogenicity/Reproductive Toxicity
664(1)
20.4 Cytotoxicity Testing
665(2)
20.4.1 Cytotoxicity Test Methods
665(1)
20.4.1.1 Cytotoxicity Method I: Extract (Elution)
666(1)
20.4.1.2 Cytotoxicity Method II: Contact
666(1)
20.4.1.3 Comparison of Extract and Contact
666(1)
20.5 Evaluation in Animals
667(2)
20.5.1 Ethical Issues
667(1)
20.5.2 Selection of Animal Models
667(1)
20.5.2.1 Abdominal
668(1)
20.5.2.2 Cardiovascular
668(1)
20.5.2.3 Neurology
668(1)
20.5.2.4 Ophthalmology
668(1)
20.5.2.5 Orthopedics
668(1)
20.5.2.6 Dental Applications
668(1)
20.5.2.7 Otology
668(1)
20.5.2.8 Respiratory System
668(1)
20.5.2.9 Urogenital Tract
669(1)
20.5.2.10 Wound Healing
669(1)
20.6
Chapter Highlights
669(16)
Laboratory Practice 5
669(1)
Case Study: Evaluation of Heart Patch in Rats
669(10)
Simple Questions in Class
679(1)
Problems and Exercises
680(1)
Bibliography
681(4)
Chapter 21 Regulation of Medical Devices
685(8)
Learning Objectives
685(1)
21.1 Regulations versus Standards
685(1)
21.2 Medical Devices
686(2)
21.2.1 Definition of Medical Devices
686(1)
21.2.2 Biomaterials in the Legal Context
687(1)
21.2.3 Classification of Medical Devices in the Legal Field
687(1)
21.2.3.1 Classification in Canada and EU
687(1)
21.2.3.2 Classification in the United States
687(1)
21.2.3.3 Classification of TGA
687(1)
21.3 Preclinical Testing
688(1)
21.4 Clinical Trials
688(2)
21.4.1 Phase I Trials: Is the Treatment Safe?
688(1)
21.4.2 Phase II Trials: Is the Treatment Effective?
688(1)
21.4.3 Phase III Trials: How Does the Treatment Compare?
689(1)
21.4.4 Phase IV Trials: Postmarket Surveillance
689(1)
21.5 Development of Medical Devices and Possible Career Opportunities
690(1)
21.6
Chapter Highlights
691(2)
Activities
691(1)
Simple Questions in Class
691(1)
Problems and Exercises
692(1)
Bibliography
692(1)
Index 693
Qi-Zhi Chen earned her PhD in biomaterials from Imperial College London in 2007. She was previously an academic at Monash University. She was also formerly with the National Heart and Lung Institute London and the University of Cambridge. She has produced more than 100 peer-reviewed journal articles and book chapters. Dr. Chens research interests broadly cover polymeric, ceramic, metallic, and composite biomaterials for application in biomedical engineering. Her teaching interests include physics and various topics of materials science and engineering, in addition to biomaterials.







George Thouas

graduated with a masters degree in biomedical sciences at Monash University, Melbourne, where he also earned his PhD in the same area in 2006. As an academic researcher, he specialized in developmental biology and reproductivemedicine, with a focus on cellular metabolism and mitochondrial function. He has also spent a major part of his career working in bioengineering research, enabling interdisciplinary projects in bioreactor design, medical devices, and novel biomaterials, with applications in tissue engineering and regeneration. Dr. Thouas has produced more than 50 publications, including peer-reviewed journal articles, book chapters, patents, and conference proceedings.