Muutke küpsiste eelistusi

E-raamat: Biomedical Text Mining

Edited by
  • Formaat: EPUB+DRM
  • Sari: Methods in Molecular Biology 2496
  • Ilmumisaeg: 17-Jun-2022
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781071623053
  • Formaat - EPUB+DRM
  • Hind: 135,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Methods in Molecular Biology 2496
  • Ilmumisaeg: 17-Jun-2022
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781071623053

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume details step-by-step instructions on biomedical literature mining protocols. Chapters guide readers through various topics such as, disease comorbidity, literature-based discovery, protocols to combine literature mining, machine learning for predicting biomedical discoveries, and uncovering unknown public knowledge by combining two pieces of information from different sets of PubMed articles. Additional chapters discuss the importance of data science to understand outbreaks such as COVID-19.   Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols.

 

Authoritative and cutting-edge, Biomedical Text Mining aims to be a useful practical guide to researches to help further their studies.          

Biomedical literature mining and its components.- Text mining protocol
to retrieve significant drug-gene interactions from PubMed abstracts.- A
hybrid protocol for finding novel gene targets for various diseases using
microarray expression data analysis and text mining.- Finding gene
associations by text mining and annotating it with Gene Ontology.- Biomedical
literature mining for repurposing laboratory tests.- A simple computational
approach to identify potential drugs for multiple sclerosis and cognitive
disorders from expert curated resources.- Combining literature mining and
machine learning for predicting biomedical discoveries.- A Text Mining
Protocol for Mining Biological Pathways and Regulatory Networks from
Biomedical Literature.- Text mining and machine learning protocol for
extracting human related protein phosphorylation information from PubMed.- A
text mining and machine learning protocol for extracting post translational
modifications of proteins from PubMed: A special focus on glycosylation,
acetylation, methylation, hydroxylation, and ubiquitination.- A hybrid
protocol for identifying comorbidity-based potential drugs for COVID-19 using
biomedical literature mining, network analysis, and deep learning.- BioBERT
and Similar Approaches for Relation Extraction.- A text mining protocol for
predicting drug-drug interaction and adverse drug reactions from PubMed
articles.- A text mining protocol for extracting drug-drug interaction and
adverse drug reactions specific to patient population, pharmacokinetics,
pharmacodynamics, and disease.- Extracting significant comorbid diseases from
MeSH index of PubMed.- Integration of transcriptomic data and metabolomic
data using biomedical literature mining and pathway analysis.