Muutke küpsiste eelistusi

E-raamat: Biomolecular EPR Spectroscopy

(Delft University of Technology, The Netherlands)
  • Formaat: 248 pages
  • Ilmumisaeg: 22-Dec-2008
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040205525
  • Formaat - EPUB+DRM
  • Hind: 59,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 248 pages
  • Ilmumisaeg: 22-Dec-2008
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781040205525

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This text for students with a background in the life sciences or related fields serves as an introduction to biomolecular EPR spectroscopy, its basic principles, theory, and applications, including low-spin and high-spin metalloproteins, spin traps and labels, interaction between active sites, and redox systems. Hagen (biotechnology, Delft U. of Technology, The Netherlands) develops a biocentric approach in which the experiment is the starting point, the spectral interpretation is valued from a point of view of biological relevance, and selected topics from quantum mechanics are addressed. No knowledge of quantum mechanics is needed to understand the basic principles explained in the first part. Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)

Comprehensive, Up-to-Date Coverage of Spectroscopy Theory and its Applications to Biological Systems

Although a multitude of books have been published about spectroscopy, most of them only occasionally refer to biological systems and the specific problems of biomolecular EPR (bioEPR). Biomolecular EPR Spectroscopy provides a practical introduction to bioEPR and demonstrates how this remarkable tool allows researchers to delve into the structural, functional, and analytical analysis of paramagnetic molecules found in the biochemistry of all species on the planet.

A Must-Have Reference in an Intrinsically Multidisciplinary Field

This authoritative reference seamlessly covers all important bioEPR applications, including low-spin and high-spin metalloproteins, spin traps and spin lables, interaction between active sites, and redox systems. It is loaded with practical tricks as well as do’s and don’ts that are based on the author’s 30 years of experience in the field. The book also comes with an unprecedented set of supporting software designed with simple graphical user interfaces that allow readers to tackle problems they will likely encounter when engaged in spectral analysis.

Breaking with convention, the book broaches quantum mechanics from the perspective of biological relevance, emphasizing low-symmetry systems. This is a necessary approach since paramagnets in biomolecules typically have no symmetry. Where key topics related to quantum mechanics are addressed, the book offers a rigorous treatment in a style that is quick-to-grasp for the non expert. Biomolecular EPR Spectroscopy is a practical, all-inclusive reference sure to become the industry standard.

Arvustused

"EPR is being increasingly used to investigate biological systems, but there is currently no text that biologists, biochemists, and bioinorganic chemists can use to understand the experimental and theoretical aspects of this technique without being experts in quantum mechanics provides a valuable introductory text that can be recommended The author is a prolific writer with a clear and concise writing style."

Michael K. Johnson, Department of Chemistry, University of Georgia, Athens, USA

Preface xi
Part 1 Basics
Chapter 1 Introduction
3
1.1 Overview of biomolecular EPR spectroscopy
3
1.2 How to use this book and associated software
4
1.3 A brief history of bioEPR
5
Chapter 2 The Spectrometer
9
2.1 The concept of magnetic resonance
9
2.2 The microwave frequency
12
2.3 Overview of the spectrometer
15
2.4 The resonator
17
2.5 From source to detector
20
2.6 The magnet
22
2.7 Phase-sensitive detection
23
2.8 Tuning the spectrometer
25
2.9 Indicative budget considerations
27
Chapter 3 The Sample
33
3.1 Sample tube and sample size
33
3.2 Freezing and thawing
36
3.3 Solid air problem
39
3.4 Biological relevance of a frozen sample
40
3.5 Sample preparation on the vacuum/gas manifold
43
3.6 Choice of reactant
47
3.7 Gaseous substrates
49
3.8 Liquid samples
50
3.9 Notes on safety
51
Chapter 4 Experimental Key Parameters
53
4.1 Boltzmann and Heisenberg dictate optimal (P,T) pairs
53
4.2 Homogeneous versus inhomogeneous lines
58
4.3 Spin multiplicity and its practical implications...
61
Chapter 5 Resonance Condition
67
5.1 Main players in EPR theory: B,S, and I
67
5.2 Anisotropy
71
5.3 Hyperfine interactions
75
5.4 Second-order effects
78
5.5 Low-symmetry effects
80
5.6 Zero-field interactions
82
5.7 Integer spins
87
5.8 Interpretation of g,A,D
89
Chapter 6 Analysis
95
6.1 Intensity
95
6.2 Quantification
96
6.3 Walking the unit sphere
100
6.4 Difference spectra
103
Part 2 Theory
Chapter 7 Energy Matrices
109
7.1 Preamble to Part 2
109
7.2 Molecular Hamiltonian and spin Hamiltonian
112
7.3 Simple example: S = 1/2
115
7.4 Not-so-simple example: S = 3/2
119
7.5 Challenging example: integer spin S 2
123
7.6 Compounded (or product) spin wavefunctions
131
Chapter 8 Biological Spin Hamiltonians
135
8.1 Higher powers of spin operators
135
8.2 Tensor noncolinearity
140
8.3 General EPR intensity expression
141
8.4 Numerical implementation of diagonalization solutions
145
8.5 A brief on perturbation theory
147
Chapter 9 Conformational Distributions
153
9.1 Classical models of anisotropic linewidth
153
9.2 Statistical theory of g-strain
157
9.3 Special case of full correlation
159
9.4 A (bio)molecular interpretation of g-strain
162
9.5 A-strain and D-strain: coupling to other interactions
164
Part 3 Specific Experiments
Chapter 10 Aqueous Solutions
169
10.1 Spin traps
169
10.2 Spin labels in isotropic media
171
10.3 Spin labels in anisotropic media
177
10.4 Metalloproteins in solution
179
Chapter 11 Interactions
181
11.1 Dipole–dipole interactions
181
11.2 Dipolar interaction in multicenter proteins
184
11.3 Exchange interactions
188
11.4 Spin ladders
193
11.5 Valence isomers
196
11.6 Superparamagnetism
197
Chapter 12 High Spins Revisited
199
12.1 Rhombograms for S = 7/2 and S = 9/2
199
12.2 D-strain modeled as a rhombicity distribution
204
12.3 Population of half-integer spin multiplets
205
12.4 Intermediate-field case for S = 5/2
207
12.5 Analytical lineshapes for integer spins
208
Chapter 13 Black Box Experiments
213
13.1 EPR-monitored binding experiments
214
13.2 EPR monitoring of redox states
215
13.3 EPR monitored kinetics
221
13.4 EPR of whole cells and organelles
222
Chapter 14 Strategic Considerations
225
14.1 Bio-integrated bioEPR
225
14.2 To be advanced or not to be advanced
226
14.3 Friday afternoon experiment
228
References 231
Index 241
Wilfred Raymond Hagen