Muutke küpsiste eelistusi

E-raamat: Biophotonics: Concepts to Applications

  • Formaat: PDF+DRM
  • Sari: Graduate Texts in Physics
  • Ilmumisaeg: 20-Jul-2016
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811009457
  • Formaat - PDF+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Graduate Texts in Physics
  • Ilmumisaeg: 20-Jul-2016
  • Kirjastus: Springer Verlag, Singapore
  • Keel: eng
  • ISBN-13: 9789811009457

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces senior-level and postgraduate students to the principles and applications of biophotonics. It also serves as a valuable reference resource or as a short-course textbook for practicing physicians, clinicians, biomedical researchers, healthcare professionals, and biomedical engineers and technicians dealing with the design, development, and application of photonics components and instrumentation to biophotonics issues. The topics include the fundamentals of optics and photonics, the optical properties of biological tissues, light-tissue interactions, microscopy for visualizing tissue components, spectroscopy for optically analyzing the properties of tissue, and optical biomedical imaging. It also describes tools and techniques such as laser and LED optical sources, photodetectors, optical fibers, bioluminescent probes for labeling cells, optical-based biosensors, surface plasmon resonance, and lab-on-a-chip technologies. Among the applications are optical coherence tomography (OCT), optical imaging modalities, photodynamic therapy (PDT), photobiostimulation or low-level light therapy (LLLT), diverse microscopic and spectroscopic techniques, tissue characterization, laser tissue ablation, optical trapping, and optogenetics. Worked examples further explain the material and how it can be applied to practical designs, and the homework problems help test readers understanding of the text.





 

Arvustused

Biophotomcs is a good textbook and will undoubtedly be a valuable lecture Supplement in an advanced undergraduate or graduate-level course. the material is pertinent and is presented clearly enough to provide a springboard for further study (Arjun Yodh, Physics Today, February, 2018)

1 Overview of Biophotonics
1(24)
1.1 What Is Biophotonics?
2(4)
1.2 Diverse Applications
6(2)
1.3 Biophotonics Spectral Windows
8(3)
1.4 Light Absorption
11(1)
1.5 Signal Attenuation
12(2)
1.6 Structures of Biological Cells and Tissues
14(6)
1.6.1 Macromolecules
15(2)
1.6.2 Biological Cells
17(2)
1.6.3 Biological Tissues and Organs
19(1)
1.7 Summary
20(1)
1.8 Problems
21(4)
References
22(3)
2 Basic Principles of Light
25(28)
2.1 Lightwave Characteristics
26(3)
2.1.1 Monochromatic Waves
27(2)
2.1.2 Pulsed Plane Waves
29(1)
2.2 Polarization
29(6)
2.2.1 Linear Polarization
31(2)
2.2.2 Elliptical and Circular Polarization
33(2)
2.3 Quantized Photon Energy and Momentum
35(2)
2.4 Reflection and Refraction
37(7)
2.4.1 Snells' Law
38(2)
2.4.2 The Fresnel Equations
40(3)
2.4.3 Diffuse Reflection
43(1)
2.5 Interference
44(1)
2.6 Optical Coherence
45(1)
2.7 Lightwave-Molecular Dipole Interaction
46(2)
2.8 Summary
48(1)
2.9 Problems
49(4)
References
51(2)
3 Optical Fibers for Biophotonics Applications
53(38)
3.1 Light Guiding Principles in Conventional Optical Fibers
54(10)
3.1.1 Ray Optics Concepts
57(3)
3.1.2 Modal Concepts
60(3)
3.1.3 Mode Field Diameter
63(1)
3.2 Graded-Index Optical Fibers
64(2)
3.2.1 Core Index Structure
64(1)
3.2.2 Graded-Index Numerical Aperture
65(1)
3.2.3 Cutoff Condition in Graded-Index Fibers
66(1)
3.3 Performance Characteristics of Generic Optical Fibers
66(2)
3.3.1 Attenuation Versus Wavelength
66(1)
3.3.2 Bend-Loss Insensitivity
67(1)
3.3.3 Mechanical Properties
67(1)
3.3.4 Optical Power-Handling Capability
68(1)
3.4 Conventional Solid-Core Fibers
68(1)
3.5 Specialty Solid-Core Fibers
69(6)
3.5.1 Photosensitive Optical Fiber
70(1)
3.5.2 Fibers Resistant to UV-Induced Darkening
71(1)
3.5.3 Bend Insensitive Fiber
72(1)
3.5.4 Polarization-Maintaining Fiber
73(2)
3.6 Double-Clad Fibers
75(1)
3.7 Hard-Clad Silica Fibers
76(1)
3.8 Coated Hollow-Core Fibers
77(1)
3.9 Photonic Crystal Fibers
78(1)
3.10 Plastic Fibers
79(1)
3.11 Side-Emitting or Glowing Fibers
80(1)
3.12 Middle-Infrared Fibers
81(2)
3.13 Optical Fiber Bundles
83(1)
3.14 Summary
84(1)
3.15 Problems
85(6)
References
87(4)
4 Fundamentals of Light Sources
91(28)
4.1 Radiometry
93(4)
4.1.1 Optical Flux and Power
94(1)
4.1.2 Irradiance or Exposure Rate
94(1)
4.1.3 Radiant Intensity
95(1)
4.1.4 Radiant Exposure or Radiant Fluence
96(1)
4.1.5 Radiance
96(1)
4.2 Arc Lamps
97(1)
4.3 Light-Emitting Diodes
98(7)
4.6.1 LED Operation and Structures
99(2)
4.3.2 LED Wavelengths and Device Uses
101(1)
4.3.3 Modulation of an LED
102(3)
4.4 Lasers for Biophotonics
105(9)
4.4.1 Basic Laser Actions
106(2)
4.4.2 Laser Diodes
108(3)
4.4.3 Solid-State Lasers
111(2)
4.4.4 Gas Lasers
113(1)
4.4.5 Optical Fiber Lasers
114(1)
4.5 Superluminescent Diodes
114(1)
4.6 Summary
115(1)
4.7 Problems
115(4)
References
117(2)
5 Fundamentals of Optical Detectors
119(28)
5.1 The pin Photodetector
120(7)
5.2 Avalanche Photodiodes
127(1)
5.3 Photodiode Noises
128(5)
5.3.1 Signal-to-Noise Ratio
128(1)
5.3.2 Noise Sources
129(2)
5.3.3 Noise-Equivalent Power and Detectivity
131(1)
5.3.4 Comparisons of Photodiodes
132(1)
5.4 Multichannel Detectors
133(3)
5.4.1 CCD Array Technology
133(1)
5.4.2 CMOS Array Technology
134(2)
5.5 Photomultiplier Tubes
136(2)
5.6 Optical Filters
138(3)
5.7 Optical Couplers and Optical Circulators
141(2)
5.8 Summary
143(1)
5.9 Problems
143(4)
References
145(2)
6 Light-Tissue Interactions
147(50)
6.1 Reflection and Refraction Applications
149(5)
6.1.1 Refraction in Ophthalmology
150(1)
6.1.2 Specular Reflection
150(3)
6.1.3 Diffuse Reflection
153(1)
6.2 Absorption
154(6)
6.2.1 Absorption Characteristics
154(3)
6.2.2 Absorption in Biological Tissues
157(3)
6.3 Scattering
160(9)
6.3.1 Elastic Scattering
162(3)
6.3.2 Rayleigh Scattering
165(2)
6.3.3 Anisotropy Factor
167(1)
6.3.4 Inelastic (Raman) Scattering
168(1)
6.4 Scattering with Absorption
169(1)
6.5 Light-Tissue Interaction Mechanisms
170(18)
6.5.1 Photobiomodulation
174(3)
6.5.2 Photochemical Interaction
177(2)
6.5.3 Thermal Interaction
179(4)
6.5.4 Photoablation
183(3)
6.5.5 Plasma-Induced Photoablation
186(1)
6.5.6 Photodisruption
187(1)
6.6 Formation of Speckles
188(1)
6.7 Fluorescence Basics
189(1)
6.8 Summary
190(2)
6.9 Problems
192(5)
References
193(4)
7 Optical Probes and Biosensors
197(36)
7.1 Overview of Biosensors and Probes
198(2)
7.2 Optical Fiber Probe Configurations
200(6)
7.3 Optical Fiber Tip Geometries
206(3)
7.4 Optical Sensors
209(7)
7.4.1 Biorecognition Optical Fiber Sensors
209(1)
7.4.2 ELISA
210(1)
7.4.3 Sensors Based on Optical Fiber Movements
211(3)
7.4.4 Microbending Fiber Sensors
214(2)
7.5 Interferometric Sensors
216(5)
7.5.1 Mach-Zehnder Interferometer
217(2)
7.5.2 Michelson Interferometer
219(1)
7.5.3 Sagnac Interferometer
220(1)
7.6 Photonic Crystal Fiber Biosensors
221(2)
7.6.1 Interferometry Sensing Methods
221(1)
7.6.2 Liquid Infiltration Sensor
222(1)
7.7 Fiber Bragg Grating Sensors
223(2)
7.7.1 Smart-Bed FBG System
223(1)
7.7.2 Distributed FBG-Based Catheter Sensor
224(1)
7.8 Surface Plasmon Resonance Biosensors
225(1)
7.9 Optical Fiber Nanoprobes
226(1)
7.10 Summary
227(1)
7.11 Problems
227(6)
References
229(4)
8 Microscopy
233(26)
8.1 Concepts and Principles of Microscopy
234(10)
8.1.1 Viewing and Illumination Techniques
234(3)
8.1.2 Observation Methods
237(3)
8.1.3 Numerical Aperture
240(1)
8.1.4 Field of View
241(1)
8.1.5 Depth of Field
242(2)
8.2 Resolution and Diffraction Limit
244(3)
8.3 Confocal Microscopy
247(2)
8.4 Fluorescence Microscopy
249(2)
8.5 Multiphoton Microscopy
251(2)
8.6 Raman Microscopy
253(1)
8.7 Light Sheet Fluorescence Microscopy
254(1)
8.8 Super-Resolution Fluorescence Microscopy
255(1)
8.9 Summary
255(1)
8.10 Problems
256(3)
References
257(2)
9 Spectroscopic Methodologies
259(32)
9.1 Fluorescence Spectroscopy
261(2)
9.2 FRET/FLIM
263(6)
9.2.1 Forster Resonance Energy Transfer
263(3)
9.2.2 Fluorescence Lifetime Imaging Microscopy
266(3)
9.3 Fluorescence Correlation Spectroscopy
269(4)
9.4 Elastic Scattering Spectroscopy
273(2)
9.5 Diffuse Correlation Spectroscopy
275(1)
9.6 Raman Spectroscopy
276(3)
9.7 Surface Enhanced Raman Scattering Spectroscopy
279(1)
9.8 Coherent Anti-stokes Raman Scattering Spectroscopy
280(2)
9.9 Stimulated Raman Scattering Spectroscopy
282(1)
9.10 Photon Correlation Spectroscopy
282(2)
9.11 Fourier Transform Infrared Spectroscopy
284(1)
9.12 Brillouin Scattering Spectroscopy
285(1)
9.13 Summary
286(1)
9.14 Problems
286(5)
References
288(3)
10 Optical Imaging Procedures
291(32)
10.1 Optical Coherence Tomography
292(11)
10.1.1 Time Domain OCT
294(7)
10.1.2 Spectral Domain OCT
301(1)
10.1.3 Swept Source OCT
301(2)
10.2 Endoscopy
303(4)
10.2.1 Basic Endoscopy
304(1)
10.2.2 Minimally Invasive Surgery
305(2)
10.2.3 Tethered Capsule Endomicroscopy
307(1)
10.3 Laser Speckle Imaging
307(3)
10.4 Optical Coherence Elastography
310(2)
10.5 Photoacoustic Tomography
312(4)
10.6 Hyperspectral Imaging
316(1)
10.7 Summary
317(1)
10.8 Problems
317(6)
References
319(4)
11 Biophotonics Technology Applications
323
11.1 Optical Manipulation
324(5)
11.2 Miniaturized Analyses Tools
329(3)
11.2.1 Lab-on-a-Chip Technology
329(2)
11.2.2 Lab-on-Fiber Concept
331(1)
11.3 Microscope in a Needle
332(1)
11.4 Single Nanoparticle Detection
333(1)
11.5 Neurophotonics
334(1)
11.6 Summary
335(1)
11.7 Problems
335
References
336
Erratum to: Biophotonics 1(338)
Index 339
After obtaining his doctorate in physics from Northeastern University, Dr. Gerd Keiser worked in the telecommunications industry at Honeywell, GTE, General Dynamics, and PhotonicsComm Solutions, where his work involved research and application of optical networking technology and digital switch implementations for telecom systems. While he was at GTE, he was the recipient of the prestigious Leslie Warner Award from GTE for ATM switch development. During this time he also was an Adjunct Professor of electrical engineering at Northeastern University, Tufts University, and Boston University. Since 2007, he has been with the National Taiwan University of Science and Technology in Taipei, Taiwan. He is a Fellow of the IEEE, a member of OSA and SPIE, and an Associate Editor of the journal Optical Fiber Technology. He has given numerous invited talks, papers, short courses, and keynote speeches at international conferences. In addition, he is the author of four graduate-level books: Optical Fiber Communications, Local Area Networks, Optical Communication Essentials, and FTTX Concepts and Applications. His professional experience and research interests are in the general areas of optical networking technology and biophotonics.