Muutke küpsiste eelistusi

E-raamat: Biopolymer-Based Food Packaging: Innovations and Technology Applications

Edited by (Central Institute of Technology Kokrajhar, Kokrajhar, India), Edited by (KTH Royal Institute of Technology, Stockholm, Sweden), Edited by (Central Institute of Technology Kokrajhar, Kokrajhar, India)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Mar-2022
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119702320
  • Formaat - PDF+DRM
  • Hind: 211,12 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Mar-2022
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119702320

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Synthetic plastics have become popular food packaging materials that are profusely used in various forms and facets. However, in recent years, disposal of plastic food packaging wastes, particularly the single use plastics, have become major concerns asenvironmental pollutants. In this context, biopolymer based neat, composite or hybrid films and coatings have gained tremendous research interests to address these concerns. Biopolymers are characterized by easy disposal, recycling, rapid biodegradation or composting, which make them environment-friendly. Plant based biopolymers such as starch, cellulose, pectin, gluten, zein, carnauba wax; animal based biopolymers such as gelatin, casein, chitosan, beeswax; microbial biopolymers such as dextran, pullulan, xanthan, microbial cellulose; and biopolymers derived from biobased monomers such as polylactic acid (PLA) are commonly used to fabricate films and coatings for food packaging applications. Biopolymer based films and coatings suffer from relatively inferior mechanical and barrier properties compared to synthetic plastics, and also lack the desired antimicrobial and antioxidant properties. To address these shortcoming, composite or hybrid films blended with other biopolymer(s) and/or reinforced with filler materials e.g. essential oil components, nanoparticles, antimicrobials and antioxidants, etc. are effective. Despite all these advantages, the manufacturing cost of biopolymer based food packaging films and coatings is higher than that of synthetic plastic films and coatings. But, in recent years, modern technologies and large scale production of these sustainable food packaging have rendered them profitable to food packaging industries. In this chapter, an introductory overview of biopolymers, their classification, properties, and food packaging and preservation applications are described."--

Biopolymer-Based Food Packaging

Explore the latest developments and advancements in biopolymer-based food packaging

In Biopolymer-Based Food Packaging: Innovations and Technology Applications, a team of accomplished researchers delivers a complete, systematic, and sequential account of the contemporary developments in the application of biopolymers for sustainable food packaging. This book introduces the fabrication, characterization as well as benefits arising from the enhanced functionalities of biopolymer-based food packaging materials.

The authors introduce various polysaccharide, protein, and microbial polymer-based food packaging films and coatings, as well as biopolymer-based blends and nanocomposites. Importance of these materials as active and intelligent food packaging systems is also introduced. Finally, the book explores biopolymer-based edible food packaging, and its efficacy in extending the shelf-life of perishable food items using sustainable materials and processes suitable for the future of circular economies around the world.

Readers will also find:

  • A thorough introduction to the incorporation of nanomaterials as fillers to improve the physico-chemical, mechanical, thermal, barrier, optical, and antimicrobial properties of food packaging nanocomposites
  • Comprehensive discussions of the use of plant-based bioactive compounds, including essential oils, in biopolymer-based food packaging
  • Practical examinations of silver and zinc oxide nanoparticles in food packaging
  • In-depth treatments of polylactic acid-based composites for food packaging applications

Biopolymer-Based Food Packaging: Innovations and Technology Applications is an invaluable resource for academic researchers and professionals in food packaging and related industries, as well as research scholars, graduate students, and entrepreneurs working and studying in the field of food preservation, environmental safety, and human health with a focus on the sustainable future.

List of Contributors
xv
Preface xix
1 An Overview of Natural Biopolymers in Food Packaging
1(28)
Santosh Kumar
Indra Bhusan Basumatary
Avik Mukherjee
Joydeep Dutta
1.1 Introduction
1(3)
1.2 History and Background
4(2)
1.3 Classification
6(9)
1.3.1 Polysaccharide-Based Biopolymers
6(5)
1.3.2 Protein-Based Biopolymers
11(2)
1.3.3 Lipid-Based Biopolymers
13(1)
1.3.4 Biopolymers Synthesized from Bio-derived Monomers
14(1)
1.4 Advantages and Disadvantages
15(1)
1.5 Properties and Applications
16(1)
1.6 Conclusion and Perspectives
17(12)
References
21(8)
2 Biopolymers: The Chemistry of Food and Packaging
29(37)
Rajib Majumder
Arpita Das
Avik Mukherjee
Santosh Kumar
2.1 Introduction
30(1)
2.2 Biopolymers, Packaging Surfaces, and the Chemistry of Foods
31(6)
2.2.1 Biopolymers
31(1)
2.2.2 Polysaccharide-Based Biopolymers
32(1)
2.2.2.1 Starch and Derivatives
32(1)
2.2.2.2 Cellulose and Derivatives
33(1)
2.2.2.3 Chitin and Derivatives
33(1)
2.2.2.4 Alginate and Pectin
34(1)
2.2.2.5 Xanthan Gum
34(1)
2.2.3 Protein-Based Biopolymers
35(1)
2.2.3.1 Gelatin
35(1)
2.2.3.2 Collagen
35(1)
2.2.3.3 Soy Protein
36(1)
2.2.3.4 Whey Protein
36(1)
2.2.4 Aliphatic Polyester-Based Biopolymers
36(1)
2.3 Properties
37(13)
2.3.1 Physicochemical Properties
37(5)
2.3.1.1 Density
42(1)
2.3.1.2 Crystallinity
42(1)
2.3.1.3 Melting Temperature (Tm)
43(1)
2.3.1.4 Glass Transition Temperature (Tg)
44(1)
2.3.1.5 Film-Forming Property
44(1)
2.3.1.6 Solubility
44(1)
2.3.1.7 Transparency
45(1)
2.3.1.8 Thermal Stability
45(1)
2.3.2 Mechanical Properties
45(1)
2.3.3 Barrier Properties
46(1)
2.3.4 Bio-activities
47(2)
2.3.5 Biodegradability
49(1)
2.4 Interactions Between Food and Packaging
50(2)
2.4.1 Migration
50(1)
2.4.2 Permeation
50(1)
2.4.3 Sorption
51(1)
2.5 Surface Properties of Packages and Food
52(1)
2.5.1 Hydrophilicity and Hydrophobicity
52(1)
2.5.2 Contact Angle
52(1)
2.5.3 Wettability
53(1)
2.6 Conclusion and Future Perspectives
53(13)
References
54(12)
3 Technologies for Biopolymer-Based Films and Coatings
66(44)
Anjali Khuntia
N. Sai Prasanna
Jayeeta Mitra
3.1 Introduction
67(1)
3.2 Fabrication Techniques for Films
68(8)
3.2.1 Solvent Casting or Wet Process
68(1)
3.2.1.1 Film-Forming Solution (FFS)
69(2)
3.2.1.2 Film Casting or Film Coating
71(1)
3.2.1.3 Film Drying
71(1)
3.2.2 Extrusion or Dry Process
71(5)
3.2.3 Electrohydrodynamic Technique
76(1)
3.2.4 Comparison and Application of Different Fabrication Techniques
76(1)
3.3 Coating Methods
76(3)
3.3.1 Dipping
77(1)
3.3.2 Brushing
77(1)
3.3.3 Spraying
77(1)
3.3.4 Electrospraying
78(1)
3.3.5 Layer-by-Layer (LBL) Electrostatic Deposition
78(1)
3.3.6 Vacuum Impregnation (VI)
79(1)
3.4 Properties
79(19)
3.4.1 Physical Properties
79(1)
3.4.1.1 Thickness
79(1)
3.4.1.2 Density
80(1)
3.4.2 Water Absorption Capacity and Sorption Analysis
80(2)
3.4.3 Contact Angle/Wetting Tension
82(1)
3.4.4 Mechanical Properties
82(2)
3.4.4.1 Tensile
84(1)
3.4.4.2 Puncture Tests
85(1)
3.4.5 Permeability
85(3)
3.4.5.1 Water Vapor Permeability
88(4)
3.4.5.2 Gas Permeability
92(1)
3.4.6 Optical Properties
93(1)
3.4.7 Rheological Properties
93(1)
3.4.7.1 Viscosity Tests
94(1)
3.4.7.2 Melt Index Test
94(1)
3.4.8 Thermal Properties
95(1)
3.4.8.1 Differential Scanning Calorimetry
95(1)
3.4.8.2 Thermogravimetric Analysis
95(1)
3.4.8.3 Thermomechanical Analysis
96(1)
3.4.8.4 Dynamic Mechanical Thermal Analysis
97(1)
3.5 Applications
98(3)
3.5.1 Composite Films or Multilayer Packaging
99(1)
3.5.2 Nanostructured Film
99(1)
3.5.2.1 Nanocomposite Films
99(2)
3.5.2.2 Nanolaminated Films
101(1)
3.6 Conclusion and Perspectives
101(9)
References
101(9)
4 Chitosan-Based Films and Coatings
110(37)
Gitanjali Gautam
Ruchi Rani
Laxmikant S. Badwaik
Charu Lata Mahanta
4.1 Introduction
110(1)
4.2 Sources, Structure, and Properties
111(4)
4.2.1 Sources
111(1)
4.2.2 Structure
112(2)
4.2.3 Properties
114(1)
4.3 Isolation, Characterization, and Modifications
115(8)
4.3.1 Isolation
115(1)
4.3.1.1 Extraction from Crustaceous Shells
115(1)
4.3.1.2 Extraction from Fungal Cell Wall and Mushrooms
116(1)
4.3.1.3 Extraction from Insect Cuticles
117(1)
4.3.1.4 Extraction from Terrestrial Animal Exoskeletons
118(1)
4.3.2 Characterization
119(1)
4.3.3 Modifications
119(4)
4.4 Chitosan-Based Composite Films and Coatings
123(3)
4.4.1 Gelatin-Based Edible Films and Coatings
123(1)
4.4.2 Protein-Based Edible Films and Coatings
124(1)
4.4.3 Starch-Based Edible Films and Coatings
125(1)
4.4.4 Alginate-Based Edible Films and Coatings
125(1)
4.5 Using Essential Oils as Antimicrobial Agent
126(2)
4.5.1 Rosemary (Rosmarinus officinalis)
127(1)
4.5.2 Cinnamon (Cinnamomum verum)
127(1)
4.5.3 Oregano (Origanum vulgare)
127(1)
4.5.4 Clove (Syzygium aromaticum L.)
128(1)
4.5.5 Thyme (Thymus vulgaris)
128(1)
4.6 Antimicrobial Activities
128(2)
4.7 Effects on the Quality of Fruits and Vegetables
130(1)
4.8 Effects on the Quality of Meat, Fish, and Seafood
130(7)
4.9 Conclusion and Perspectives
137(10)
References
138(9)
5 Starch-Based Edible Films and Coatings
147(31)
S.R. Priyadarshini
Srinivasan Krishnamoorthy
J.A. Moses
C. Anandharamakrishnan
5.1 Introduction
148(1)
5.2 Source, Structure, and Characteristics of Starch Granules
148(2)
5.3 Physicochemical, Rheological, and Functional Properties
150(2)
5.4 Chemical and Physical Modifications
152(4)
5.4.1 Chemical Modifications
152(1)
5.4.1.1 Crosslinking
152(1)
5.4.1.2 Grafting
153(1)
5.4.1.3 Esterification
153(1)
5.4.1.4 Etherification
153(1)
5.4.1.5 Oxidization
153(1)
5.4.1.6 Cationic Modification
153(1)
5.4.1.7 Dual Modification
154(1)
5.4.2 Physical Modifications
154(1)
5.4.2.1 Pregelatinized Starch
154(1)
5.4.2.2 Annealing
154(1)
5.4.2.3 Heat Moisture Treatment
154(1)
5.4.2.4 Heat Drying
155(1)
5.4.2.5 Osmotic Pressure Treatment
155(1)
5.2.2.6 Freezing
155(1)
5.2.2.7 Thermal Inhibition
155(1)
5.4.2.8 Non-Thermal Modifications
155(1)
5.5 Starch-Based Bionanocomposite Films and Coatings
156(3)
5.6 Characterization
159(5)
5.6.1 Film Thickness
159(1)
5.6.2 Particle Size Determination
159(1)
5.6.3 Scanning Electron Microscopy (SEM)
159(1)
5.6.4 Fourier Transform Infrared Spectroscopy (FTIR)
160(2)
5.6.5 X-ray Diffraction (XRD)
162(2)
5.7 Applications
164(4)
5.8 Recent Developments and Future Directions
168(1)
5.9 Conclusion and Perspectives
169(9)
References
170(8)
6 Protein-Based Films and Coatings
178(47)
Manashi Das Purkayastha
Santosh Kumar
6.1 Introduction
179(1)
6.2 Types, Structures, and Properties
180(3)
6.2.1 Casein
180(1)
6.2.2 Whey
180(1)
6.2.3 Gluten
181(1)
6.2.4 Soy Protein
182(1)
6.2.5 Collagen and Gelatin
182(1)
6.2.6 Zein
183(1)
6.3 Improvement in Physicochemical Properties of Proteins
183(4)
6.3.1 Plasticizers
184(1)
6.3.2 Physical and Chemical Crosslinking
185(2)
6.4 Protein-Based Nanocomposites and Their Various Properties
187(5)
6.5 Fabrication Techniques
192(8)
6.5.1 Direct Casting
192(1)
6.5.2 Coating
192(1)
6.5.3 Spread Coating
193(1)
6.5.4 Spin Coating
194(1)
6.5.5 Spray Coating or Spraying
194(1)
6.5.6 Dip Coating or Immersion Coating
194(1)
6.5.7 Fluidized-Bed Coating
195(1)
6.5.8 Pan Coating or Panning
195(1)
6.5.9 Layer-by-Layer Assembly
195(1)
6.5.10 Electrospinning
196(1)
6.5.11 Extrusion
196(2)
6.5.12 Compression Molding
198(1)
6.5.13 Lamination
199(1)
6.6 Applications
200(8)
6.6.1 As Carrier of Antimicrobial Agents
201(2)
6.6.2 As Carrier of Antioxidants
203(1)
6.6.3 As Carrier of Flavoring Compounds
204(2)
6.6.4 As Carrier of Live Microorganisms
206(2)
6.7 Conclusion and Perspectives
208(17)
References
209(16)
7 Microbial Polysaccharides (MPs) in Food Packaging
225(39)
C. Shashikumar
Sudip Mitra
Siddhartha Singha
7.1 Introduction
225(2)
7.2 Production
227(3)
7.3 Extraction and Purification
230(1)
7.4 Characterization
230(19)
7.4.1 Chemical Structure
234(5)
7.4.2 Physicochemical Properties
239(1)
7.4.2.1 Xanthan
239(1)
7.4.2.2 Scleroglucan
239(1)
7.4.2.3 Hyaluronic Acid or Hyaluronan
239(1)
7.4.2.4 Xylinan or Acetan
239(1)
7.4.2.5 Dextran
240(1)
7.4.2.6 Gellan
241(1)
7.4.2.7 Curdlan
242(1)
7.4.2.8 Bacterial Cellulose
243(1)
7.4.2.9 Pullulan
243(1)
7.4.2.10 Alginate
243(1)
7.4.2.11 Levan
244(1)
7.4.2.12 β-Glucan
244(1)
7.4.2.13 FucoPol
244(1)
7.4.2.14 Kefiran
245(1)
7.4.2.15 Polyhydroxyalkanoate
245(1)
7.4.3 Film Formability and Properties Relevant for Packaging
245(4)
7.5 Strategies for Tailoring MP Structures for Packaging Film or Coat Applications
249(2)
7.6 Applications and Their Commercialization Status
251(4)
1.1 Conclusion and Perspectives
255(9)
References
256(8)
8 Polylactic Acid (PLA)-Based Composites in Food Packaging
264(18)
M. Sukumar
K. Sudharsan
Radha Krishnan K.
8.1 Introduction
264(8)
8.1.1 Production of Lactic Acid
266(1)
8.1.2 Properties
267(2)
8.1.3 PLA Composites as Food Packaging Materials
269(3)
8.2 Isolation and Purification
272(2)
8.3 PLA-Based Antimicrobial Nanocomposites
274(2)
8.4 Applications
276(1)
8.5 Conclusion and Perspectives
277(5)
References
278(4)
9 Antimicrobial Agents in Films and Coatings
282(54)
Yashaswini Premjit
Gulshan Kumar Malik
Jayeeta Mitra
9.1 Introduction
283(1)
9.2 Classification
284(11)
9.2.1 Natural Antimicrobials
284(6)
9.2.1.1 Plant-Based Antimicrobials
290(1)
9.2.1.2 Microbial-Based Antimicrobials
291(1)
9.2.1.3 Animal-Based Antimicrobials
292(1)
9.2.2 Chemical Antimicrobials
293(1)
9.2.2.1 Nitrites
293(1)
9.2.2.2 Chlorine Dioxide
293(1)
9.2.3 Antimicrobial Nanostructures
294(1)
9.2.3.1 Nanocarriers for Antimicrobials
294(1)
9.2.3.2 Silver Nanoparticles
294(1)
9.2.3.3 Chitosan Nanostructures
294(1)
9.2.3.4 Nanoclays
294(1)
9.2.3.5 Metal Oxide Nanoparticles
295(1)
9.3 Choice of Materials
295(4)
9.4 Methods of Addition
299(9)
9.4.1 Antimicrobial Edible Coatings
299(4)
9.4.2 Antimicrobial Films
303(2)
9.4.3 Antimicrobial Pads
305(1)
9.4.4 Antimicrobial Sachets
306(1)
9.4.5 Modified Atmospheric Packaging
307(1)
9.5 Effect on Packaging Film Properties
308(5)
9.5.1 Effect on Mechanical Properties
308(2)
9.5.2 Effect on Barrier Properties
310(1)
9.5.3 Effect on Appearance, Color, and Transparency
310(3)
9.5.4 Effect on Surface Hydrophilicity/Hydrophobicity of Films
313(1)
9.6 Mechanisms of Action
313(4)
9.6.1 Essential Oils
313(1)
9.6.2 Organic Acids
314(1)
9.6.3 Animal-Based Antimicrobials
314(1)
9.6.4 Antimicrobial Peptides
315(1)
9.6.5 Antimicrobial Nanoparticles
315(1)
9.6.5.1 Ti02
315(1)
9.6.5.2 ZnO
316(1)
9.6.5.3 Ag NPs
316(1)
9.7 Release Kinetics from Packaging Systems to Food
317(2)
9.8 Food Regulations
319(1)
9.9 Commercialization
320(1)
9.10 Conclusion and Perspectives
320(16)
References
322(14)
10 Nanomaterials in Food Packaging
336(32)
Santosh Kumar
Avik Mukherjee
Sweety Kalita
Namrata Singh
Vimat Katiyar Atanu Mitra
Dipankar Haider
10.1 Introduction
336(1)
10.2 Nanomaterials and Food Packaging Concepts
337(2)
10.3 Applications
339(14)
10.3.1 Supplementing Packaging Characteristics
339(3)
10.3.1.1 Nanoclay
342(3)
10.3.1.2 Graphene
345(1)
10.3.1.3 Organic Nanofillers
345(1)
10.3.2 Antimicrobial Packaging
346(1)
10.3.3 Extending Shelf-Life of Food
347(4)
10.3.4 Inducing Smartness/Intelligence
351(2)
10.4 Migration to Packaged Food Items
353(1)
10.5 Environmental and Safety Aspects
354(3)
10.5.1 Impact on Human Health and the Environment
354(2)
10.5.2 Regulations on Use in the Food Sector
356(1)
10.6 Conclusion and Perspectives
357(11)
References
358(10)
11 Silver and Zinc Oxide Nanoparticles in Films and Coatings
368(26)
Abhishek Roy
K. Dharmalingam
R. Anandalakshmi
11.1 Introduction
368(1)
11.2 Antimicrobial Properties
369(6)
11.3 Biopolymer-Based Silver Nanocomposites
375(2)
11.4 ZnO Nanostructures in Biopolymers
377(2)
11.5 Applications of Silver Bionanocomposites
379(4)
11.6 Applications of ZnO Bionanocomposites
383(1)
11.7 Conclusion and Perspectives
384(10)
References
385(9)
12 Plant-Based Active Compounds in Food Packaging
394(28)
N. Arul Manikandan
Kannan Pakshirajan
G. Pugazhenthi
12.1 Introduction
394(2)
12.2 Plant-Based Active Compounds
396(2)
12.2.1 Simple Phenolic Compounds
396(1)
12.2.2 Flavones, Flavanols, and Flavonoids
396(1)
12.2.3 Quinones
396(1)
12.2.4 Tannins
397(1)
12.2.5 Coumarins
398(1)
12.2.6 Alkaloids
398(1)
12.2.7 Terpenes
398(1)
12.3 Active Components to Control Microbial Spoilage
398(10)
12.3.1 Turmeric
405(1)
12.3.2 Cinnamon
405(1)
12.3.3 Lemongrass
405(1)
12.3.4 Neem
406(1)
12.3.5 Coriander
406(1)
12.3.6 Garlic
406(1)
12.3.7 Rosemary
406(1)
12.3.8 Grapefruit Seed
407(1)
12.3.9 Aloe Vera
407(1)
12.3.10 Oregano
407(1)
12.4 Active Materials to Control Food Oxidation (Food Antioxidants)
408(3)
12.4.1 Quercetin
408(1)
12.4.2 Carnosic Acid
409(1)
12.4.3 Ellagic Acid
410(1)
12.4.4 Ferulic Acid
410(1)
12.4.5 a-Tocopherol
411(1)
12.5 Polymer-Based Composites
411(4)
12.6 Conclusion and Perspectives
415(7)
References
415(7)
13 Essential Oils in Active Films and Coatings
422(23)
K. Dharmalingam
Abhishek Roy
R. Anandalakshmi
13.1 Introduction
422(1)
13.2 Classifications and Components
423(1)
13.3 Properties and Characteristics
424(1)
13.4 Encapsulation
425(3)
13.5 Biopolymer-Essential Oil Composites
428(4)
13.6 Applications
432(6)
13.7 Conclusion and Perspectives
438(7)
References
439(6)
14 Edible Films and Coatings
445(20)
Indra Bhusan Basumatary
Sweety Kalita
Vimal Katiyar
Avik Mukherjee
Santosh Kumar
14.1 Introduction
445(2)
14.2 Biopolymers
447(3)
14.2.1 Polysaccharides
447(1)
14.2.2 Proteins
448(2)
14.2.3 Lipids
450(1)
14.3 Natural Active Components
450(3)
14.3.1 Plant Extracts
450(2)
14.3.2 Antimicrobial Peptides
452(1)
14.3.3 Probiotics
453(1)
14.4 Nanomaterials
453(3)
14.4.1 Inorganic Nanomaterials
453(2)
14.4.2 Organic Nanomaterials
455(1)
14.5 Extending Shelf-Life of Food
456(4)
14.5.1 Fruits and Vegetables
456(3)
14.5.2 Meat, Poultry, and Fish
459(1)
14.5.3 Milk and Dairy Products
460(1)
14.6 Conclusion and Perspectives
460(5)
References 465(11)
Index 476
Santosh Kumar, Central Institute of Technology Kokrajhar, Kokrajhar, India.

Avik Mukherjee, Central Institute of Technology Kokrajhar, Kokrajhar, India.

Joydeep Dutta, KTH Royal Institute of Technology, Stockholm, Sweden.