Muutke küpsiste eelistusi

E-raamat: Bioseparations Science and Engineering

(College of Engineering, University of Oklahoma), (President, Intelligen, Inc.), (Technical Leader, Pharmaceutical Solutions, Inc.), (Chief Scientist, Techshot, Inc.)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 150,66 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Designed for undergraduates, graduate students, and industry practitioners, Bioseparations Science and Engineering fills a critical need in the field of bioseparations. Current, comprehensive, and concise, it covers bioseparations unit operations in unprecedented depth. In each of the chapters, the authors use a consistent method of explaining unit operations, starting with a qualitative description noting the significance and general application of the unit operation. They then illustrate the scientific application of the operation, develop the required mathematical theory, and finally, describe the applications of the theory in engineering practice, with an emphasis on design and scaleup. Unique to this text is a chapter dedicated to bioseparations process design and economics, in which a process simular, SuperPro Designer® is used to analyze and evaluate the production of three important biological products.

New to this second edition are updated discussions of moment analysis, computer simulation, membrane chromatography, and evaporation, among others, as well as revised problem sets. Unique features include basic information about bioproducts and engineering analysis and a chapter with bioseparations laboratory exercises. Bioseparations Science and Engineering is ideal for students and professionals working in or studying bioseparations, and is the premier text in the field.
Preface xix
1 Introduction to Bioproducts and Bioseparations
1(47)
1.1 Instructional Objectives
3(1)
1.2 Broad Classification of Bioproducts
3(1)
1.3 Small Biomolecules
4(9)
1.3.1 Primary Metabolites
4(5)
1.3.2 Secondary Metabolites
9(3)
1.3.3 Summary of Small Biomolecules
12(1)
1.4 Macromolecules: Proteins
13(18)
1.4.1 Primary Structure
13(1)
1.4.2 Secondary Structure
14(1)
1.4.3 Tertiary Structure
14(3)
Example 1.1 Effect of a Reducing Agent on Protein Structure and Mobility
17(1)
1.4.4 Quaternary Structure
17(1)
1.4.5 Prosthetic Groups and Hybrid Molecules
17(2)
1.4.6 Functions and Commercial Uses of Proteins
19(2)
1.4.7 Stability of Proteins
21(4)
1.4.8 Recombinant Protein Expression
25(6)
1.5 Macromolecules: Nucleic Acids and Oligonucleotides
31(2)
1.6 Macromolecules: Polysaccharides
33(1)
1.7 Particulate Products
34(1)
1.8 Introduction to Bioseparations: Engineering Analysis
35(5)
1.8.1 Stages of Downstream Processing
35(1)
Example 1.2 Initial Selection of Purification Steps
36(1)
1.8.2 Basic Principles of Engineering Analysis
37(2)
1.8.3 Process and Product Quality
39(1)
1.8.4 Criteria for Process Development
39(1)
1.9 The Route to Market
40(2)
1.9.1 The Chemical and Applications Range of the Bioproduct
40(1)
1.9.2 Documentation of Pharmaceutical Bioproducts
41(1)
1.9.3 GLP and cGMP
42(1)
1.9.4 Formulation
42(1)
1.10 Summary
42(6)
Nomenclature
43(1)
Problems
44(2)
References
46(2)
2 Analytical Methods and Bench Scale Preparative Bioseparations
48(63)
2.1 Instructional Objectives
49(1)
2.2 Specifications
49(2)
2.3 Assay Attributes
51(4)
2.3.1 Precision
51(1)
2.3.2 Accuracy
52(1)
2.3.3 Specificity
52(1)
2.3.4 Linearity, Limit of Detection, and Limit of Quantitation
53(1)
2.3.5 Range
54(1)
2.3.6 Robustness
55(1)
2.4 Analysis of Biological Activity
55(4)
2.4.1 Animal Model Assays
55(1)
2.4.2 Cell-Line-Derived Bioassays
56(1)
2.4.3 In vitro Biochemical Assays
57(1)
Example 2.1 Coupled Enzyme Assay for Alcohol Oxidase
58(1)
2.5 Analysis of Purity
59(29)
2.5.1 Electrophoretic Analysis
60(3)
Example 2.2 Estimation of the Maximum Temperature in an Electrophoresis Gel
63(13)
2.5.2 High-Performance Liquid Chromatography (HPLC)
76(3)
2.5.3 Mass Spectrometry
79(1)
2.5.4 Coupling of HPLC with Mass Spectrometry
80(1)
2.5.5 Ultraviolet Absorbance
80(1)
Example 2.3 Determination of Molar Absorptivity
81(1)
2.5.6 CHNO/Amino Acid Analysis (AAA)
82(1)
Example 2.4 Calculations Based on CHNO Analysis
82(1)
2.5.7 Protein Assays
83(1)
2.5.8 Enzyme-Linked Immunosorbent Assay
84(2)
2.5.9 Gas Chromatography
86(1)
2.5.10 DNA Hybridization
86(1)
2.5.11 ICP/MS(AES)
87(1)
2.5.12 Dry Weight
87(1)
2.6 Microbiology Assays
88(2)
2.6.1 Sterility
88(1)
2.6.2 Bioburden
88(1)
2.6.3 Endotoxin
89(1)
2.6.4 Virus, Mycoplasma, and Phage
89(1)
2.7 Bench Scale Preparative Separations
90(11)
2.7.1 Preparative Electrophoresis
90(6)
2.7.2 Magnetic Bioseparations
96(5)
2.8 Summary
101(10)
Nomenclature
103(1)
Problems
104(4)
References
108(3)
3 Cell Lysis and Flocculation
111(24)
3.1 Instructional Objectives
111(1)
3.2 Some Elements of Cell Structure
112(2)
3.2.1 Prokaryotic Cells
112(1)
3.2.2 Eukaryotic Cells
113(1)
3.3 Cell Lysis
114(6)
3.3.1 Osmotic and Chemical Cell Lysis
116(1)
3.3.2 Mechanical Methods of Lysis
117(3)
3.4 Flocculation
120(11)
3.4.1 The Electric Double Layer
121(3)
Example 3.1 Dependence of the Debye Radius on the Type of Electrolyte
124(1)
3.4.2 Forces Between Particles and Flocculation by Electrolytes
125(2)
Example 3.2 Sensitivity of Critical Flocculation Concentration to Temperature and Counterion Charge Number
127(1)
3.4.3 The Schulze-Hardy Rule
128(1)
3.4.4 Flocculation Rate
129(1)
3.4.5 Polymeric Flocculants
129(2)
3.5 Summary
131(4)
Nomenclature
131(2)
Problems
133(1)
References
133(2)
4 Filtration
135(50)
4.1 Instructional Objectives
136(1)
4.2 Filtration Principles
137(15)
4.2.1 Conventional Filtration
137(1)
Example 4.1 Batch Filtration
138(5)
4.2.2 Crossflow Filtration
143(3)
Example 4.2 Concentration Polarization in Ultrafiltration
146(4)
Example 4.3 Comparison of Mass Transfer Coefficient Calculated by Boundary Layer Theory Versus by Shear-Induced Diffusion Theory
150(2)
4.3 Filter Media and Equipment
152(8)
4.3.1 Conventional Filtration
152(4)
4.3.2 Crossflow Filtration
156(4)
4.4 Membrane Fouling
160(2)
4.5 Scale-up and Design of Filtration Systems
162(14)
4.5.1 Conventional Filtration
163(1)
Example 4.4 Rotary Vacuum Filtration
164(2)
Example 4.5 Washing of a Rotary Vacuum Filter Cake
166(5)
4.5.2 Crossflow Filtration
171(2)
Example 4.6 Diafiltration Mode in Crossflow Filtration
173(3)
4.6 Summary
176(9)
Nomenclature
178(1)
Problems
179(5)
References
184(1)
5 Sedimentation
185(34)
5.1 Instructional Objectives
185(1)
5.2 Sedimentation Principles
186(3)
5.2.1 Equation of Motion
186(1)
5.2.2 Sensitivities
187(2)
5.3 Methods for Analysis of Sedimentation
189(5)
5.3.1 Equilibrium Sedimentation
190(1)
5.3.2 Sedimentation Coefficient
191(1)
Example 5.1 Application of the Sedimentation Coefficient
191(1)
5.3.3 Equivalent Time
192(1)
Example 5.2 Scale-up Based on Equivalent Time
193(1)
5.3.4 Sigma Analysis
193(1)
5.4 Production Centrifuges: Comparison and Engineering Analysis
194(9)
5.4.1 Tubular Bowl Centrifuge
195(4)
Example 5.3 Complete Recovery of Bacterial Cells in a Tubular Bowl Centrifuge
199(1)
5.4.2 Disk Centrifuge
200(3)
5.5 Ultracentrifugation
203(2)
5.5.1 Determination of Molecular Weight
204(1)
5.6 Flocculation and Sedimentation
205(1)
5.7 Sedimentation at Low Accelerations
206(4)
5.7.1 Diffusion, Brownian Motion
206(1)
5.7.2 Isothermal Settling
207(1)
5.7.3 Convective Motion and Peclet Analysis
207(1)
5.7.4 Inclined Sedimentation
207(2)
5.7.5 Field-Flow Fractionation
209(1)
5.8 Centrifugal Elutriation
210(1)
5.9 Summary
210(9)
Nomenclature
212(2)
Problems
214(3)
References
217(2)
6 Extraction
219(26)
6.1 Instructional Objectives
219(1)
6.2 Extraction Principles
220(12)
6.2.1 Phase Separation and Partitioning Equilibria
220(6)
6.2.2 Countercurrent Stage Calculations
226(4)
Example 6.1 Separation of a Bioproduct and an Impurity by Countercurrent Extraction
230(1)
Example 6.2 Effect of Solvent Rate in Countercurrent Staged Extraction of an Antibiotic
230(2)
6.3 Scale-up and Design of Extractors
232(7)
6.3.1 Reciprocating-Plate Extraction Columns
233(2)
Example 6.3 Scale-up of a Reciprocating-Plate Extraction Column
235(2)
6.3.2 Centrifugal Extractors
237(1)
Example 6.4 Increase in Feed Rate to a Podbielniak Centrifugal Extractor
238(1)
6.4 Summary
239(6)
Nomenclature
240(1)
Problems
241(2)
References
243(2)
7 Liquid Chromatography and Adsorption
245(82)
7.1 Instructional Objectives
247(1)
7.2 Adsorption Equilibrium
248(3)
7.3 Adsorption Column Dynamics
251(8)
7.3.1 Fixed-Bed Adsorption
251(5)
Example 7.1 Determination of the Mass Transfer Coefficient from Adsorption Breakthrough Data
256(2)
7.3.2 Agitated-Bed Adsorption
258(1)
7.4 Chromatography Column Dynamics
259(20)
7.4.1 Plate Models
260(2)
7.4.2 Moment Analysis
262(2)
7.4.3 Chromatography Column Mass Balance with Negligible Dispersion
264(1)
Example 7.2 Chromatographic Separation of Two Solutes
264(2)
Example 7.3 Calculation of the Shock Wave Velocity for a Nonlinear Isotherm
266(1)
Example 7.4 Calculation of the Elution Profile
267(2)
7.4.4 Dispersion Effects in Chromatography
269(6)
7.4.5 Computer Simulation of Chromatography Considering Axial Dispersion, Fluid-Phase Mass Transfer, Intraparticle Diffusion, and Nonlinear Equilibrium
275(2)
7.4.6 Gradients and Modifiers
277(1)
Example 7.5 Equilibrium for a Protein Anion in the Presence of Chloride Ion
277(2)
7.5 Membrane Chromatography
279(5)
Example 7.6 Comparison of Time for Diffusion Mass Transfer in Conventional Chromatography and Membrane Chromatography
282(2)
7.6 Simulated Moving Bed Chromatography
284(4)
7.7 Adsorbent Types
288(6)
7.7.1 Silica-Based Resins
288(1)
7.7.2 Polymer-Based Resins
289(1)
7.7.3 Ion Exchange Resins
290(1)
7.7.4 Reversed-Phase Chromatography
291(1)
7.7.5 Hydrophobic Interaction Chromatography
292(1)
7.7.6 Affinity Chromatography
292(1)
7.7.7 Immobilized Metal Affinity Chromatography (IMAC)
293(1)
7.7.8 Size Exclusion Chromatography
293(1)
7.8 Particle Size and Pressure Drop in Fixed Beds
294(1)
7.9 Equipment
295(4)
7.9.1 Columns
295(1)
7.9.2 Chromatography Column Packing Procedures
296(1)
7.9.3 Detectors
297(1)
7.9.4 Chromatography System Fluidics
298(1)
7.10 Scale-up
299(12)
7.10.1 Adsorption
299(3)
Example 7.7 Scale-up of the Fixed-Bed Adsorption of a Pharmaceutical Product
302(4)
7.10.2 Chromatography
306(2)
Example 7.8 Scale-up of a Protein Chromatography
308(1)
Example 7.9 Scale-up of Protein Chromatography Using Standard Column Sizes
309(1)
Example 7.10 Scale-up of Elution Buffer Volumes in Protein Chromatography
310(1)
Example 7.11 Consideration of Pressure Drop in Column Scaling
311(1)
7.11 Summary
311(16)
Nomenclature
314(3)
Problems
317(7)
References
324(3)
8 Precipitation
327(35)
8.1 Instructional Objectives
327(1)
8.2 Protein Solubility
328(6)
8.2.1 Structure and Size
328(1)
8.2.2 Charge
329(2)
8.2.3 Solvent
331(2)
Example 8.1 Salting Out of a Protein with Ammonium Sulfate
333(1)
8.3 Precipitate Formation Phenomena
334(10)
8.3.1 Initial Mixing
335(1)
8.3.2 Nucleation
335(1)
8.3.3 Growth Governed by Diffusion
336(1)
Example 8.2 Calculation of Concentration of Nuclei in a Protein Precipitation
337(3)
Example 8.3 Diffusion-Limited Growth of Particles
340(1)
8.3.4 Growth Governed by Fluid Motion
341(1)
Example 8.4 Growth of Particles Limited by Fluid Motion
342(1)
8.3.5 Precipitate Breakage
343(1)
8.3.6 Precipitate Aging
343(1)
8.4 Particle Size Distribution in a Continuous-Flow Stirred Tank Reactor
344(4)
Example 8.5 Dependence of Population Density on Particle Size and Residence Time in a CSTR
348(1)
8.5 Methods of Precipitation
348(4)
8.6 Design of Precipitation Systems
352(2)
8.7 Summary
354(8)
Nomenclature
356(2)
Problems
358(2)
References
360(2)
9 Crystallization
362(22)
9.1 Instructional Objectives
363(1)
9.2 Crystallization Principles
363(5)
9.2.1 Crystals
363(1)
9.2.2 Nucleation
364(2)
9.2.3 Crystal Growth
366(1)
9.2.4 Crystallization Kinetics from Batch Experiments
367(1)
9.3 Batch Crystallizers
368(5)
9.3.1 Analysis of Dilution Batch Crystallization
369(2)
Example 9.1 Batch Crystallization with Constant Rate of Change of Diluent Concentration
371(2)
9.4 Process Crystallization of Proteins
373(2)
9.5 Crystallizer Scale-up and Design
375(4)
9.5.1 Experimental Crystallization Studies as a Basis for Scale-up
375(2)
9.5.2 Scale-up and Design Calculations
377(1)
Example 9.2 Scale-up of Crystallization Based on Constant Power per Volume
378(1)
9.6 Summary
379(5)
Nomenclature
379(2)
Problems
381(2)
References
383(1)
10 Evaporation
384(23)
10.1 Instructional Objectives
384(1)
10.2 Evaporation Principles
385(11)
10.2.1 Heat Transfer
385(3)
Example 10.1 Evaporation of a Butyl Acetate Stream Containing a Heat-Sensitive Antibiotic in a Falling-Film Evaporator
388(6)
10.2.2 Vapor-Liquid Separation
394(2)
10.3 Evaporation Equipment
396(3)
10.3.1 Climbing-Film Evaporators
397(1)
10.3.2 Falling-Film Evaporators
398(1)
10.3.3 Forced-Circulation Evaporators
398(1)
10.3.4 Agitated-Film Evaporators
399(1)
10.4 Scale-up and Design of Evaporators
399(3)
10.5 Summary
402(5)
Nomenclature
403(1)
Problems
404(1)
References
405(2)
11 Drying
407(34)
11.1 Instructional Objectives
407(1)
11.2 Drying Principles
408(14)
11.2.1 Water in Biological Solids and in Gases
408(3)
Example 11.1 Drying of Antibiotic Crystals
411(1)
11.2.2 Heat and Mass Transfer
412(2)
Example 11.2 Conductive Drying of Wet Solids in a Tray
414(6)
Example 11.3 Mass Flux During the Constant Rate Drying Period in Convective Drying
420(1)
Example 11.4 Time to Dry Nonporous Biological Solids by Convective Drying
421(1)
11.3 Dryer Description and Operation
422(5)
11.3.1 Vacuum-Shelf Dryers
422(1)
11.3.2 Batch Vacuum Rotary Dryers
423(1)
11.3.3 Freeze Dryers
424(2)
11.3.4 Spray Dryers
426(1)
11.4 Scale-up and Design of Drying Systems
427(8)
11.4.1 Vacuum-Shelf Dryers
427(1)
11.4.2 Batch Vacuum Rotary Dryers
428(1)
11.4.3 Freeze Dryers
428(3)
11.4.4 Spray Dryers
431(1)
Example 11.5 Sizing of a Spray Dryer
432(3)
11.5 Summary
435(6)
Nomenclature
436(1)
Problems
437(3)
References
440(1)
12 Bioprocess Design and Economics
441(70)
12.1 Instructional Objectives
441(1)
12.2 Definitions and Background
442(3)
12.3 Synthesis of Bioseparation Processes
445(9)
12.3.1 Primary Recovery Stages
445(5)
12.3.2 Intermediate Recovery Stages
450(1)
12.3.3 Final Purification Stages
451(2)
12.3.4 Pairing of Unit Operations in Process Synthesis
453(1)
12.4 Process Analysis
454(6)
12.4.1 Spreadsheets
454(1)
12.4.2 Process Simulators and Their Benefits
454(3)
12.4.3 Using a Biochemical Process Simulator
457(3)
12.5 Process Economics
460(12)
12.5.1 Capital Cost Estimation
461(5)
12.5.2 Operating Cost Estimation
466(5)
12.5.3 Profitability Analysis
471(1)
12.6 Illustrative Examples
472(30)
12.6.1 Citric Acid Production
472(7)
12.6.2 Human Insulin Production
479(16)
12.6.3 Therapeutic Monoclonal Antibody Production
495(7)
12.7 Summary
502(9)
Problems
503(4)
References
507(4)
13 Laboratory Exercises in Bioseparations
511(20)
13.1 Flocculant Screening
511(3)
13.1.1 Background
512(1)
13.1.2 Objectives
512(1)
13.1.3 Procedure
512(1)
13.1.4 Report
513(1)
13.1.5 Some Notes and Precautions
514(1)
13.2 Crossflow Filtration
514(2)
13.2.1 Background
514(1)
13.2.2 Objectives
515(1)
13.2.3 Procedure
515(1)
13.2.4 Report
515(1)
13.3 Centrifugation of Flocculated and Unflocculated Particulates
516(4)
13.3.1 Background
516(1)
13.3.2 Objectives
517(1)
13.3.3 Procedure
517(2)
13.3.4 Report
519(1)
13.4 Aqueous Two-Phase Extraction
520(5)
13.4.1 Physical Measurements
520(1)
13.4.2 Procedure
521(1)
13.4.3 Calculations and Report
522(2)
13.4.4 Inverse Lever Rule
524(1)
13.5 Chromatography Scale-up
525(6)
13.5.1 Background
525(1)
13.5.2 Objectives
525(1)
13.5.3 Procedure
526(2)
13.5.4 Report
528(2)
References
530(1)
Appendix: Table of Units and Constants 531(4)
Index 535
Roger G. Harrison is Professor in the College of Engineering at the University of Oklahoma. Scott R. Rudge is Technical Leader at RMC Pharmaceutical Solutions, Inc. Paul W. Todd is Chief Scientist at Techshot, Inc. Demetri P. Petrides is President of Intelligen, Inc.