Preface |
|
xiii | |
Acknowledgements |
|
xvii | |
|
1 Basic Statistical Terms, Sample Statistics |
|
|
1 | (18) |
|
1.1 Cases, Variables and Data Types |
|
|
1 | (2) |
|
1.2 Population and Random Sample |
|
|
3 | (1) |
|
|
4 | (5) |
|
1.4 Precision of Mean Estimate, Standard Error of Mean |
|
|
9 | (1) |
|
1.5 Graphical Summary of Individual Variables |
|
|
10 | (1) |
|
1.6 Random Variables, Distribution, Distribution Function, Density Distribution |
|
|
10 | (3) |
|
|
13 | (1) |
|
|
13 | (4) |
|
|
17 | (1) |
|
|
18 | (1) |
|
2 Testing Hypotheses, Goodness-of-Fit Test |
|
|
19 | (20) |
|
2.1 Principles of Hypothesis Testing |
|
|
19 | (2) |
|
2.2 Possible Errors in Statistical Tests of Hypotheses |
|
|
21 | (5) |
|
2.3 Null Models with Parameters Estimated from the Data: Testing Hardy--Weinberg Equilibrium |
|
|
26 | (1) |
|
|
26 | (1) |
|
2.5 Critical Values and Significance Level |
|
|
27 | (2) |
|
|
29 | (1) |
|
2.7 Bayesian Statistics: What is It? |
|
|
30 | (2) |
|
2.8 The Dark Side of Significance Testing |
|
|
32 | (3) |
|
|
35 | (1) |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
37 | (2) |
|
|
39 | (16) |
|
3.1 Two-Way Contingency Tables |
|
|
39 | (5) |
|
3.2 Measures of Association Strength |
|
|
44 | (2) |
|
3.3 Multidimensional Contingency Tables |
|
|
46 | (1) |
|
3.4 Statistical and Causal Relationship |
|
|
47 | (2) |
|
3.5 Visualising Contingency Tables |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (4) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (10) |
|
4.1 Main Properties of a Normal Distribution |
|
|
55 | (1) |
|
4.2 Skewness and Kurtosis |
|
|
56 | (1) |
|
4.3 Standardised Normal Distribution |
|
|
57 | (1) |
|
4.4 Verifying the Normality of a Data Distribution |
|
|
58 | (2) |
|
|
60 | (1) |
|
|
60 | (3) |
|
|
63 | (1) |
|
|
64 | (1) |
|
5 Student's t Distribution |
|
|
65 | (19) |
|
|
65 | (1) |
|
5.2 T Distribution and its Relation to the Normal Distribution |
|
|
66 | (1) |
|
5.3 Single Sample Test and Paired t Test |
|
|
67 | (3) |
|
|
70 | (2) |
|
5.5 Confidence Interval of the Mean |
|
|
72 | (1) |
|
|
73 | (1) |
|
5.7 Reporting Data Variability and Mean Estimate Precision |
|
|
74 | (3) |
|
5.8 How Large Should a Sample Size Be? |
|
|
77 | (2) |
|
|
79 | (1) |
|
|
79 | (3) |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
84 | (8) |
|
|
84 | (1) |
|
6.2 Testing for Differences in Variance |
|
|
85 | (2) |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
88 | (3) |
|
|
91 | (1) |
|
|
91 | (1) |
|
7 Non-parametric Methods for Two Samples |
|
|
92 | (12) |
|
|
93 | (2) |
|
7.2 Wilcoxon Test for Paired Observations |
|
|
95 | (2) |
|
7.3 Using Rank-Based Tests |
|
|
97 | (1) |
|
|
97 | (2) |
|
|
99 | (1) |
|
|
99 | (3) |
|
|
102 | (1) |
|
|
103 | (1) |
|
8 One-Way Analysis of Variance (ANOVA) and Kruskal--Wallis Test |
|
|
104 | (25) |
|
|
104 | (1) |
|
8.2 ANOVA: A Method for Comparing More Than Two Means |
|
|
104 | (1) |
|
|
105 | (1) |
|
8.4 Sum of Squares Decomposition and the F Statistic |
|
|
106 | (2) |
|
8.5 ANOVA for Two Groups and the Two-Sample t Test |
|
|
108 | (1) |
|
8.6 Fixed and Random Effects |
|
|
108 | (1) |
|
|
109 | (1) |
|
8.8 Violating ANOVA Assumptions |
|
|
110 | (1) |
|
|
111 | (4) |
|
8.10 Non-parametric ANOVA: Kruskal--Wallis Test |
|
|
115 | (1) |
|
|
116 | (1) |
|
|
117 | (10) |
|
|
127 | (1) |
|
|
128 | (1) |
|
9 Two-Way Analysis of Variance |
|
|
129 | (22) |
|
|
129 | (1) |
|
|
130 | (2) |
|
9.3 Sum of Squares Decomposition and Test Statistics |
|
|
132 | (2) |
|
9.4 Two-Way ANOVA with and without Interactions |
|
|
134 | (1) |
|
9.5 Two-Way ANOVA with No Replicates |
|
|
135 | (1) |
|
|
135 | (2) |
|
|
137 | (1) |
|
9.8 Non-parametric Methods |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
139 | (10) |
|
|
149 | (1) |
|
|
150 | (1) |
|
10 Data Transformations for Analysis of Variance |
|
|
151 | (13) |
|
10.1 Assumptions of ANOVA and their Possible Violations |
|
|
151 | (2) |
|
|
153 | (3) |
|
10.3 Arcsine Transformation |
|
|
156 | (1) |
|
10.4 Square-Root and Box-Cox Transformation |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (1) |
|
|
158 | (5) |
|
|
163 | (1) |
|
|
163 | (1) |
|
11 Hierarchical ANOVA, Split-Plot ANOVA, Repeated Measurements |
|
|
164 | (19) |
|
|
164 | (3) |
|
|
167 | (2) |
|
11.3 ANOVA for Repeated Measurements |
|
|
169 | (2) |
|
|
171 | (1) |
|
|
171 | (10) |
|
|
181 | (1) |
|
|
182 | (1) |
|
12 Simple Linear Regression: Dependency Between Two Quantitative Variables |
|
|
183 | (23) |
|
|
183 | (1) |
|
12.2 Regression and Correlation |
|
|
184 | (1) |
|
12.3 Simple Linear Regression |
|
|
184 | (3) |
|
|
187 | (3) |
|
12.5 Confidence and Prediction Intervals |
|
|
190 | (1) |
|
12.6 Regression Diagnostics and Transforming Data in Regression |
|
|
190 | (5) |
|
12.7 Regression Through the Origin |
|
|
195 | (2) |
|
12.8 Predictor with Random Variation |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
12.11 How to Proceed in R |
|
|
198 | (6) |
|
|
204 | (1) |
|
12.13 Recommended Reading |
|
|
205 | (1) |
|
13 Correlation: Relationship Between Two Quantitative Variables |
|
|
206 | (13) |
|
|
206 | (1) |
|
13.2 Correlation as a Dependency Statistic for Two Variables on an Equal Footing |
|
|
206 | (3) |
|
|
209 | (3) |
|
13.4 Non-parametric Methods |
|
|
212 | (1) |
|
13.5 Interpreting Correlations |
|
|
212 | (1) |
|
13.6 Statistical Dependency and Causality |
|
|
213 | (3) |
|
|
216 | (1) |
|
|
216 | (2) |
|
|
218 | (1) |
|
13.10 Recommended Reading |
|
|
218 | (1) |
|
14 Multiple Regression and General Linear Models |
|
|
219 | (20) |
|
|
219 | (1) |
|
14.2 Dependency of a Response Variable on Multiple Predictors |
|
|
219 | (4) |
|
|
223 | (1) |
|
14.4 General Linear Models and Analysis of Covariance |
|
|
224 | (1) |
|
|
225 | (1) |
|
|
226 | (11) |
|
|
237 | (1) |
|
|
238 | (1) |
|
15 Generalised Linear Models |
|
|
239 | (13) |
|
|
239 | (1) |
|
15.2 Properties of Generalised Linear Models |
|
|
240 | (2) |
|
15.3 Analysis of Deviance |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
243 | (1) |
|
|
244 | (1) |
|
|
245 | (1) |
|
|
246 | (4) |
|
|
250 | (1) |
|
15.10 Recommended Reading |
|
|
251 | (1) |
|
16 Regression Models for Non-linear Relationships |
|
|
252 | (9) |
|
|
252 | (1) |
|
|
253 | (1) |
|
16.3 Polynomial Regression |
|
|
253 | (2) |
|
16.4 Non-linear Regression |
|
|
255 | (1) |
|
|
256 | (1) |
|
|
256 | (3) |
|
|
259 | (1) |
|
|
260 | (1) |
|
17 Structural Equation Models |
|
|
261 | (13) |
|
|
261 | (1) |
|
17.2 SEMs and Path Analysis |
|
|
261 | (4) |
|
|
265 | (1) |
|
|
265 | (7) |
|
|
272 | (1) |
|
|
272 | (2) |
|
18 Discrete Distributions and Spatial Point Patterns |
|
|
274 | (16) |
|
|
274 | (1) |
|
18.2 Poisson Distribution |
|
|
274 | (2) |
|
18.3 Comparing the Variance with the Mean to Measure Spatial Distribution |
|
|
276 | (3) |
|
18.4 Spatial Pattern Analyses Based on the K-function |
|
|
279 | (1) |
|
18.5 Binomial Distribution |
|
|
280 | (3) |
|
|
283 | (1) |
|
|
283 | (6) |
|
|
289 | (1) |
|
|
289 | (1) |
|
|
290 | (13) |
|
|
290 | (1) |
|
19.2 Survival Function and Hazard Rate |
|
|
291 | (2) |
|
19.3 Differences in Survival Among Groups |
|
|
293 | (1) |
|
19.4 Cox Proportional Hazard Model |
|
|
293 | (2) |
|
|
295 | (1) |
|
|
295 | (7) |
|
|
302 | (1) |
|
|
302 | (1) |
|
20 Classification and Regression Trees |
|
|
303 | (14) |
|
|
303 | (1) |
|
|
304 | (2) |
|
20.3 Pruning the Tree and Crossvalidation |
|
|
306 | (1) |
|
20.4 Competing and Surrogate Predictors |
|
|
307 | (1) |
|
|
308 | (1) |
|
|
309 | (7) |
|
|
316 | (1) |
|
|
316 | (1) |
|
|
317 | (9) |
|
|
317 | (1) |
|
21.2 Aims and Properties of Classification |
|
|
317 | (2) |
|
|
319 | (1) |
|
21.4 Similarity and Distance |
|
|
319 | (1) |
|
21.5 Clustering Algorithms |
|
|
320 | (1) |
|
|
320 | (1) |
|
|
321 | (1) |
|
|
322 | (1) |
|
|
322 | (2) |
|
|
324 | (1) |
|
|
325 | (1) |
|
21.12 Recommended Reading |
|
|
325 | (1) |
|
|
326 | (17) |
|
|
327 | (1) |
|
22.2 Unconstrained Ordination Methods |
|
|
327 | (3) |
|
22.3 Constrained Ordination Methods |
|
|
330 | (1) |
|
22.4 Discriminant Analysis |
|
|
331 | (2) |
|
|
333 | (1) |
|
|
333 | (7) |
|
22.7 Alternative Software |
|
|
340 | (1) |
|
|
341 | (1) |
|
|
341 | (2) |
|
Appendix A First Steps with R Software |
|
|
343 | (20) |
|
A.1 Starting and Ending R, Command Line, Organising Data |
|
|
343 | (6) |
|
|
349 | (2) |
|
|
351 | (6) |
|
A.4 Importing Data into R |
|
|
357 | (2) |
|
|
359 | (1) |
|
|
360 | (2) |
|
A.7 Other Introductions to Work with R |
|
|
362 | (1) |
Index |
|
363 | |