Muutke küpsiste eelistusi

E-raamat: Black Hole Physics: From Collapse to Evaporation

  • Formaat: EPUB+DRM
  • Sari: Graduate Texts in Physics
  • Ilmumisaeg: 07-Nov-2022
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031103438
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Graduate Texts in Physics
  • Ilmumisaeg: 07-Nov-2022
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031103438

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook gradually introduces the reader to several topics related to black hole physics with a didactic approach. It starts with the most basic black hole solution, the Schwarzschild metric, and discusses the basic classical properties of black hole solutions as seen by different probes. Then it reviews various theorems about black hole properties as solutions to Einstein gravity coupled to matter fields, conserved charges associated with black holes, and laws of black hole thermodynamics. Next, it elucidates semiclassical and quantum aspects of black holes, which are relevant in ongoing and future research. The book is enriched with many exercises and solutions to assist in the learning.

The textbook is designed for physics graduate students who want to start their research career in the field of black holes; postdocs who recently changed their research focus towards black holes and want to get up-to-date on recent and current research topics; advanced researchers intending to teach (or learn) basic and advanced aspects of black hole physics and the associated mathematical tools. Besides general relativity, the reader needs to be familiar with standard undergraduate physics, like thermodynamics, quantum mechanics, and statistical mechanics. Moreover, familiarity with basic quantum field theory in Minkowski space is assumed. The book covers the rest of the needed background material in the main text or the appendices.

1 Introduction
1(26)
1.1 Essentials of General Relativity
1(5)
1.1.1 Equivalence Principle and Geodesies
2(2)
1.1.2 Einstein Gravity
4(2)
1.2 Brief Review of Black Hole History
6(9)
1.2.1 First Five Decades: Finding Solutions and Classic Analyses
6(3)
1.2.2 Black Holes Through Observations
9(2)
1.2.3 Black Holes as Thermodynamical Systems
11(4)
1.3 Gravitational Collapse in Stars
15(3)
1.3.1 Core Collapse Supernova and Black Hole Formation
15(1)
1.3.2 Estimating the Chandrasekhar Mass
16(2)
1.4 Different Schools of Thought on Black Holes
18(3)
1.4.1 GR School
18(1)
1.4.2 HEP School
19(1)
1.4.3 Quantum Information School
20(1)
Further Reading
21(1)
Exercises
21(6)
2 Black Hole Solutions and Basic Properties
27(60)
2.1 Schwarzschild Metric, Basic Facts, and Analyses
27(5)
2.1.1 Symmetries and Killing Vectors
28(1)
2.1.2 Flamm Diagram
28(1)
2.1.3 Singularities, Asymptotic, and Near Horizon Behavior
29(2)
2.1.4 ADM Mass and Angular Momentum
31(1)
2.1.5 Infinite Redshift Surface
31(1)
2.2 Particle Probes and Geodesies
32(8)
2.2.1 Null Geodesies
34(3)
2.2.2 Timelike Geodesies and Particle Orbits
37(3)
2.2.3 Eddington-Finkelstein Coordinates
40(1)
2.3 Maximal Extensions and Causal Diagrams
40(13)
2.3.1 Geodesic Completeness and Maximal Analytic Extension
41(1)
2.3.2 Kruskal Coordinates for Schwarzschild Geometry
42(2)
2.3.3 Structure of Lightcones and Preliminary Notion of Horizon
44(2)
2.3.4 Carter-Penrose Causal Diagrams
46(6)
2.3.5 Realistic Black Holes and Wormholes
52(1)
2.4 Einstein-Maxwell Theory and Reissner-Nordstrom Black Holes
53(3)
2.5 Kerr Solution and Its Basic Analysis
56(7)
2.5.1 Basic Properties of Kerr Black Hole
59(2)
2.5.2 Geodesies of Kerr Geometry
61(2)
2.6 Black Holes in (A)dS Backgrounds
63(4)
2.6.1 Schwarzschild-dS Black Holes
64(1)
2.6.2 Schwarzschild-AdS and Topological Black Holes
65(2)
2.7 Plebanski--Demianski Black Holes
67(2)
2.8 Vaidya Metric as Example for Non-stationary Black Holes
69(1)
Further Reading
70(1)
Exercises
71(16)
3 Formal Definitions and Classic Theorems
87(32)
3.1 Mathematical Definitions of Black Holes and Horizons
87(11)
3.1.1 Killing Horizon and Surface Gravity
87(3)
3.1.2 Event Horizon and Mathematical Black Hole Definition
90(2)
3.1.3 Apparent Horizons and Trapped Surfaces
92(2)
3.1.4 Cauchy Horizons and Predictability
94(2)
3.1.5 Other Horizon Definitions
96(2)
3.2 Classic Conjectures and Theorems
98(10)
3.2.1 Raychaudhuri Equation
99(1)
3.2.2 Classical Energy Conditions
100(2)
3.2.3 Singularity Theorems
102(1)
3.2.4 Asymptotic Flatness
103(2)
3.2.5 Horizon Theorems
105(1)
3.2.6 Uniqueness Theorems
106(1)
3.2.7 Cosmic Censorship Conjecture
107(1)
3.3 Optical Focusing Equation and Area Theorem (2nd Law)
108(1)
Further Reading
109(1)
Exercises
109(10)
4 Probing Black Holes, Their Formation and Stability
119(28)
4.1 General Remarks on Black Hole Observations
119(3)
4.2 Black Hole Photon-Sphere, Shadows, and Images
122(1)
4.3 Penrose Process, Super-Radiance, and Black Hole Mining
123(2)
4.4 Gravitational Waves and Black Hole Mergers
125(4)
4.5 Accretion Disk Physics
129(2)
4.6 Black Hole Formation in Shock-Wave Collisions
131(1)
4.7 Black Hole Perturbations and Linear Stability
132(4)
4.7.1 Quasi-normal Modes
133(1)
4.7.2 Late-Time Tails and Linearized Stability
134(1)
4.7.3 Perturbative Aspects of Black Hole Binaries
135(1)
4.8 Gravitational Collapse and Non-linear Stability
136(2)
4.8.1 Critical Collapse and Choptuik Exponent
136(1)
4.8.2 On Non-linear Stability of Black Hole Solutions
137(1)
Further Reading
138(1)
Exercises
139(8)
5 Black Hole Charges and Thermodynamics
147(32)
5.1 Introduction to Systematic Methods for Charge Computation
147(1)
5.2 Komar Charges
148(2)
5.3 Solution Phase Space Method
150(8)
5.3.1 Solution Space Is a Phase Space
152(1)
5.3.2 Exact Symmetries and the Associated Charges
152(6)
5.4 Entropy as a Conserved Charge
158(8)
5.4.1 Entropy as a Noether Charge
159(2)
5.4.2 Entropy and Solution Phase Space Method
161(1)
5.4.3 Entropy in Cases Involving Gauge Fields
162(4)
5.5 Four Laws of Black Hole Thermodynamics
166(8)
5.5.1 Zeroth Law
166(2)
5.5.2 First Law and Its Derivation
168(4)
5.5.3 Second Law and Its Generalizations
172(1)
5.5.4 Third Law and Extremal Black Holes
173(1)
Further Reading
174(1)
Exercises
174(5)
6 Semiclassical Aspects of Black Holes
179(42)
6.1 Variational Principle
179(3)
6.1.1 Gibbons--Hawking--York Boundary Term
180(2)
6.1.2 Brown--York Stress Tensor
182(1)
6.2 Quantization on Black Hole Backgrounds
182(1)
6.3 Unruh Effect
183(4)
6.3.1 Unruh Vacuum State
184(1)
6.3.2 Unruh Temperature, Bogoliubov Transformations
185(1)
6.3.3 Unruh Temperature, Euclidean Field Theory Analysis
185(1)
6.3.4 Discussion
186(1)
6.4 Hawking Effect
187(7)
6.4.1 Heuristics of Hawking Effect from Vacuum Fluctuations
187(1)
6.4.2 Hawking Temperature from Euclidean Continuation
188(1)
6.4.3 Hawking Radiation from Ray-Tracing
189(3)
6.4.4 Hawking Radiation from Anomalies
192(1)
6.4.5 Greybody Factors
193(1)
6.4.6 Discussion
194(1)
6.5 Black Hole Entropy and Alternative Derivations
194(5)
6.5.1 Euclidean Effective Action and Gibbons-Hawking Derivation
195(3)
6.5.2 Entropy Bounds
198(1)
6.6 Parikh---Wilczek Tunneling
199(4)
6.6.1 Painleve Coordinates
200(1)
6.6.2 Painleve--Parikh--Wilczek Vacuum
201(2)
6.6.3 Discussion of Parikh--Wilczek Tunneling
203(1)
6.7 Black Hole Evaporation
203(1)
6.8 Membrane Paradigm
204(4)
6.8.1 Membrane Action and Dynamics, Classical Analysis
205(1)
6.8.2 Membrane Action, Semiclassical Analysis
206(2)
6.9 Information Puzzle and Apparent Loss of Unitarity
208(3)
Further Reading
211(1)
Exercises
212(9)
7 Gravity and Black Holes in Diverse Dimensions
221(30)
7.1 Why Gravity in Lower Dimensions?
221(1)
7.2 Gravity in Three Dimensions
222(7)
7.2.1 BTZ Black Holes and Banados Geometries
223(1)
7.2.2 Chern--Simons Formulation
224(1)
7.2.3 Canonical Boundary Charges
225(2)
7.2.4 Alternative Boundary Conditions to Brown--Henneaux
227(1)
7.2.5 Beyond AdS3 Einstein Gravity
228(1)
7.3 Gravity in Two Dimensions
229(6)
7.3.1 Jackiw--Teitelboim Model
230(1)
7.3.2 Generic Dilaton Gravity
230(2)
7.3.3 Gauge Theoretic Formulation
232(1)
7.3.4 All Classical Solutions, Locally and Globally
233(2)
7.4 Why Gravity in Higher Dimensions?
235(1)
7.5 Higher-Dimensional Black Hole/Ring/Brane Solutions
236(8)
7.5.1 Tangherlini Solution
236(1)
7.5.2 Myers---Perry Black Holes
236(2)
7.5.3 Five-Dimensional Black Ring Solution
238(3)
7.5.4 Asymptotic AdS Vacuum Black Hole Solutions
241(1)
7.5.5 Black Branes
242(2)
7.6 Black Holes in Large Number of Dimensions
244(1)
Further Reading
244(1)
Exercises
245(6)
8 Aspects of Holography
251(34)
8.1 Basics of Holography
251(6)
8.1.1 AdS/CFT, the Precise Statement
252(1)
8.1.2 Gravity in Anti-De Sitter Space
253(1)
8.1.3 Holographic Renormalization
254(2)
8.1.4 Holographic Correlation Functions
256(1)
8.2 Holography and Quantum Information
257(4)
8.3 AdS Black Holes and Holography
261(5)
8.3.1 Black Holes as Thermal States
262(1)
8.3.2 Hawking--Page Phase Transition
263(1)
8.3.3 Eternal Black Holes
264(2)
8.4 Asymptotic Symmetries
266(2)
8.5 Soft Hair and Near Horizon Symmetries
268(3)
8.6 Extremal Black Holes and Attractor Mechanism
271(3)
8.6.1 Symmetry Enhancement
271(1)
8.6.2 Attractor Mechanism
272(2)
8.7 Kerr/CFT and Related Topics
274(2)
8.8 Summary and Outlook
276(2)
Further Reading
278(1)
Exercises
278(7)
9 Quantum Aspects of Black Holes
285(32)
9.1 Black Holes and Quantum Gravity
285(5)
9.2 Black Hole Complementarity, Firewalls, Page Curve and Islands
290(2)
9.3 Black Holes in String Theory
292(5)
9.3.1 D1-D5-P System
294(2)
9.3.2 Breckenridge---Myers--Peet--Vafa Solution
296(1)
9.4 Microstate Counting
297(3)
9.4.1 Microstate Counting for BTZ Black Holes
299(1)
9.4.2 Microstate Counting for D1-D5-P and Breckenridge---Myers--Peet--Vafa Black Hole
299(1)
9.5 Microstate Identification, Fuzzball and Fluffball Proposals
300(7)
9.5.1 Fuzzball Proposal, Microstate Geometries
301(2)
9.5.2 Soft Hair Proposal and Its Fluffball Realization
303(4)
9.6 Information Puzzle and AdS/CFT
307(1)
Further Reading
308(1)
Exercises
309(8)
10 Outlook
317(10)
10.1 Summary of the Book
317(2)
10.2 Open Conceptual Issues
319(3)
10.3 Observational Prospects
322(5)
Appendix A Variational Identities 327(4)
Appendix B P-Forms 331(2)
Appendix C Cartan Formulation 333(6)
Appendix D Teukolsky Equation 339(4)
Appendix E Basics of QFT in Curved Spacetime 343(4)
Appendix F ADM 3 + 1 Decomposition 347(4)
Appendix G Covariant Phase Space Formalism 351(12)
Appendix H More on Membrane Paradigm 363(4)
Appendix I String Theory Low Energy Effective Actions 367(4)
Appendix J Hints to Some Selected Exercises 371(20)
References 391
Daniel Grumiller is an Austrian physicist and a Professor at the Institute for Theoretical Physics (ITP) at TU Wien in Vienna. He received his PhD from there in 2001 and joined the ITP faculty in 2009 after postdoc positions at Leipzig U. and MIT. His main research covers black hole holography and "lower-dimensional" gravity, on which he has been lecturing since 2004. His long-term research goal is a comprehensive understanding of quantum gravity, in particular the fate of evaporating black holes and their microscopic structure.





M.M. Sheikh-Jabbari is an Iranian physicist and a Professor at Institute for Research in Fundamental Sciences (IPM) in Tehran. He received his PhD from Sharif Uni. in Tehran in Feb. 1998 and joined IPM as a faculty member in Jan. 2005, after some years of postdoctoral fellowships at IPM, ICTP (Trieste, Italy) and Stanford Uni. His main research covers different areas in Theoretical High Energy Physics, of course including various aspects of black holes, while he has worked on cosmology, in particular the early universe, inflationary models and particle physics phenomenology.