Muutke küpsiste eelistusi

E-raamat: Borel Equivalence Relations

  • Formaat: 240 pages
  • Sari: University Lecture Series
  • Ilmumisaeg: 02-Jan-2015
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470421885
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 64,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 240 pages
  • Sari: University Lecture Series
  • Ilmumisaeg: 02-Jan-2015
  • Kirjastus: American Mathematical Society
  • ISBN-13: 9781470421885
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

With a wide range of unified, and in some cases significantly streamlined proofs of difficult results, including dichotomy theorems, this offers a fresh approach to the theory of Borel equivalence relations and related topics insect theory, ergodic theory, topological dynamics, group theory, combinatorics, functional analysis, and model theory. Kanovei begins with an explanation of the descriptive said he read it back ground, and some theorems of descriptive set theory, then progresses to such topics as Borel ideals, equivalence relations, Borel reducibility of equivalents relations, elementary results, countable equivalence relations, hyperfinite equivalence relations, the first and second dichotomy theorems actions of the infinite symmetric group, turbulent group actions, summable equivalence relations, equalities, pinned equivalence relations, and the production of Borel equivalence relations to Borel ideals. He provides an appendix on Cohen and Gandy-Harrington forcing over countable models. Annotation ©2008 Book News, Inc., Portland, OR (booknews.com)
Preface ix
Introduction 1(6)
Descriptive set theoretic background
7(12)
Polish spaces
7(1)
Pointsets. Borel sets
8(2)
Projective sets
10(1)
Analytic formulas
10(2)
Transformation of analytic formulas
12(1)
Effective hierarchies of pointsets
13(1)
Characterization of σ0/1 sets
14(1)
Classifying functions
15(1)
Closure properties
16(3)
Some theorems of descriptive set theory
19(22)
Trees and ranks
19(3)
Trees and sets of the first projective level
22(1)
Reduction and separation
23(1)
Uniformization and Kreisel Selection
24(3)
Universal sets
27(2)
Good universal sets
29(1)
Reflection
30(1)
Enumeration of δ1/1 sets
31(2)
Coding Borel sets
33(1)
Choquet property of σ1/1 and the Gandy-Harrington topology
34(2)
Sets with countable sections
36(2)
Applications for Borel sets
38(3)
Borel ideals
41(10)
Introduction to ideals
41(1)
Reducibility of ideals
41(2)
P-ideals and submeasures
43(1)
Polishable ideals
44(1)
Characterization of polishable ideals
45(2)
Summable and density ideals
47(2)
Operations on ideals and Frechet ideals
49(1)
Some other ideals
49(2)
Introduction to equivalence relations
51(12)
Some examples of Borel equivalence relations
51(1)
Operations on equivalence relations
52(2)
Orbit equivalence relations of group actions
54(1)
Some examples of orbit equivalence relations
55(2)
Probability measures
57(1)
Invariant and ergodic measures
58(5)
Borel reducibility of equivalence relations
63(10)
Borel reducibility
63(1)
Injective Borel reducibility---embedding
64(1)
Borel, continuous, and Baire measurable reductions
65(1)
Additive reductions
66(1)
Diagram of Borel reducibility of key equivalence relations
67(1)
Reducibility and irreducibility on the diagram
68(2)
Dichotomy theorems
70(1)
Borel ideals in the structure of Borel reducibility
71(2)
``Elementary'' results
73(12)
Equivalence relations E3 and T2
73(1)
Discretization and generation by ideals
74(2)
Summables irreducible to density-0
76(3)
How to eliminate forcing
79(1)
The family lp
80(2)
l∞: maximal Kσ
82(3)
Introduction to countable equivalence relations
85(10)
Several types of equivalence relations
85(1)
Smooth and below
86(2)
Assembling countable equivalence relations
88(1)
Countable equivalence relations and group actions
89(1)
Non-hyperfinite countable equivalence relations
90(3)
A sufficient condition of essential countability
93(2)
Hyperfinite equivalence relations
95(12)
Hyperfinite equivalence relations: The characterization theorem
95(1)
Proof of the characterization theorem
96(5)
Hyperfiniteness of tail equivalence relations
101(2)
Classification modulo Borel isomorphism
103(1)
Remarks on the classification theorem
104(2)
Which groups induce hyperfinite equivalence relations?
106(1)
More on countable equivalence relations
107(12)
Amenable groups
108(1)
Amenable equivalence relations
109(2)
Hyperfiniteness and amenability
111(1)
Treeable equivalence relations
112(1)
Above treeable. Free Borel countable equivalence relations
113(6)
The 1st and 2nd dichotomy theorems
119(14)
The 1st dichotomy theorem
119(2)
Splitting system
121(1)
Structural and chaotic domains
122(1)
2nd dichotomy theorem
122(3)
Restricted product forcing
125(1)
Splitting system
126(1)
Construction of a splitting system
127(1)
The ideal of E0-small sets
128(2)
A forcing notion associated with E°
130(3)
Ideal £1 and the equivalence relation E1
133(14)
Ideals below £1
133(2)
E1: hypersmoothness and non-countability
135(1)
3rd dichotomy
136(2)
Case 1
138(1)
Case 2
138(2)
The construction
140(2)
A forcing notion associated with E1
142(1)
Above E1
143(4)
Actions of the infinite symmetric group
147(8)
Infinite symmetric group S∞ and isomorphisms
147(1)
Borel invariant sets
148(1)
Equivalence relations classifiable by countable structures
149(1)
Reduction to countable graphs
150(1)
Reduction of Borel classifiability to Tx
151(4)
Turbulent group actions
155(12)
Local orbits and turbulence
155(1)
Shift actions of summable ideals are turbulent
156(1)
Ergodicity
157(1)
``Generic'' reduction to Tx
158(2)
Ergodicity of turbulent actions w.r.t. Tx
160(1)
Inductive step of countable power
161(2)
Inductive step of the Fubini product
163(1)
Other inductive steps
163(1)
Applications to the shift action of ideals
164(3)
The ideal £3 and the equivalence relation E3
167(14)
Continual assembling of equivalence relations
167(2)
The two cases
169(2)
Case 1
171(1)
Case 2
172(1)
Splitting system
173(1)
The embedding
174(1)
The construction of a splitting system: warmup
175(1)
The construction of a splitting system: the step
175(3)
A forcing notion associated with E3
178(3)
Summable equivalence relations
181(10)
Classification of summable ideals and equivalence relations
181(1)
Grainy sets and the two cases
182(1)
Case 1
183(2)
Case 2
185(1)
The construction of a splitting system
186(1)
A forcing notion associated with E2
187(4)
C0-equalities
191(12)
C0-equalities: definition
191(1)
Some examples and simple results
192(1)
C0-equalities and additive reducibility
193(1)
A largest C0-equality
194(1)
Classification
195(2)
LV-equalities
197(3)
Non-σ-compact case
200(3)
Pinned equivalence relations
203(8)
The definition of pinned equivalence relations
203(2)
T2 is not pinned
205(1)
Fubini product of pinned equivalence relations is pinned
205(1)
Complete left-invariant actions induce pinned relations
206(1)
All equivalence relations with Σ0/3 classes are pinned
207(1)
Another family of pinned ideals
208(3)
Reduction of Borel equivalence relations to Borel ideals
211(12)
Trees
211(1)
Louveau-Rosendal transform
212(2)
Embedding and equivalence of normal trees
214(2)
Reduction to Borel ideals: first approach
216(2)
Reduction to Borel ideals: second approach
218(3)
Some questions
221(2)
Appendix A. On Cohen and Gandy-Harrington forcing over countable models
223(8)
A.1. Models of a fragment of ZFC
223(2)
A.2. Coding uncountable sets in countable models
225(1)
A.3. Forcing over countable models
225(2)
A.4. Cohen forcing
227(1)
A.5. Gandy-Harrington forcing
228(3)
Bibliography 231(4)
Index 235