Muutke küpsiste eelistusi

E-raamat: Bosons after Symmetry Breaking in Quantum Field Theory

  • Formaat: 100 pages
  • Ilmumisaeg: 01-Feb-2018
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781616686581
  • Formaat - PDF+DRM
  • Hind: 72,86 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 100 pages
  • Ilmumisaeg: 01-Feb-2018
  • Kirjastus: Nova Science Publishers Inc
  • ISBN-13: 9781616686581

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The authors present a unified description of the spontaneous symmetry breaking and its associated bosons in fermion field theory. There is no Goldstone boson in the fermion field theory models of Nambu-Jona-Lasinio, Thirring and QCD2 after the chiral symmetryis spontaneously broken in the new vacuum. The defect of the Goldstone theorem is clarified, and the "e;massless boson"e; predicted by the theorem is virtual and corresponds to just a free massless fermion and antifermion pair. Further, the authors discuss the exact spectrum of the Thirring model by the Bethe ansatz solutions, and the analyticalexpressions of all the physical observables enable the authors to understand the essence of the spontaneous symmetry breaking in depth. Also, the authors examine the boson spectrum in QCD2, and show that bosons always have a finite mass for SU(Nc) colors. The problem of the light cone prescription in QCD2 is discussed, and it is shown that thetrivial light cone vacuum is responsible for the wrong prediction of the boson mass.
Preface vii
Introduction
1(6)
Goldstone Theorem and Its Applicability
7(8)
Boson Field Theory Model
10(1)
Fermion Field Theory Model
11(4)
Goldstone Boson in Boson Field Theory
15(4)
Symmetry Breaking in Four Dimensional Boson Fields
16(1)
Symmetry Breaking in Two Dimensional Boson Fields
17(2)
No Goldstone Boson in Fermion Field Theory
19(14)
Intuitive Discussion
20(4)
Bogoliubov Transformation
24(1)
Massive Fermion Case
25(1)
Massless Fermion Case
26(1)
Boson Mass in NJL Model
27(2)
Boson Mass in Thirring Model
29(4)
Bethe Ansatz Solutions in Thirring Model
33(16)
Thirring Model and Bethe Ansatz Solutions
35(2)
Vacuum State
37(1)
Symmetric Vacuum State
38(1)
True Vacuum State
38(1)
1p---1h State
39(3)
Boson State
42(1)
Bosonization of Massless Thirring Model
42(1)
Physics of Zero Mode
43(1)
Bosonization of Massive Thirring Model
44(1)
Bosons of Massive Thirring Model
45(1)
Summary of Thirring Model
46(3)
Schwinger Boson in Two Dimensional QED
49(8)
Schwinger Model
49(2)
Bosonization of Schwinger Model
51(4)
QED2 with Massive Fermions
55(2)
Bosons in Two Dimensional QCD
57(22)
Bogoliubov Transformation in QCD2
61(3)
Condensate and Boson Mass in SU (2) and SU (3)
64(2)
Condensate and Boson Mass in SU (Nc)
66(4)
QCD2 in Light Cone
70(1)
Examination of't Hooft Model
71(1)
RPA Calculations in QED2 and QCD2
72(3)
Spontaneous Chiral Symmetry Breaking in QCD2
75(4)
Conclusions
79(6)
References 85