Muutke küpsiste eelistusi

E-raamat: Bounded and Precise Word Problems for Presentations of Groups

  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"We introduce and study the bounded word problem and the precise word problem for groups given by means of generators and defining relations. For example, for every finitely presented group, the bounded word problem is in NP, i.e., it can be solved in nondeterministic polynomial time, and the precise word problem is in PSPACE, i.e., it can be solved in polynomial space. The main technical result of the paper states that, for certain finite presentations of groups, which include the Baumslag-Solitar one-relator groups and free products of cyclic groups, the bounded word problem and the precise word problem can be solved in polylogarithmic space. As consequences of developed techniques that can be described as calculus of brackets, we obtain polylogarithmic space bounds for the computational complexity of the diagram problem for free groups, for the width problem for elements of free groups, and for computation of the area defined by polygonal singular closed curves in the plane. We also obtain polynomial time bounds for these problems"--

Ivanov introduces and studies the bounded word problem and the precise word problem for groups given by means of generators and defining relations. For example, he says, for every finitely presented group, the bounded word problem is in NP-that is, can be solved in nondeterministic polynomial time-and the precise word problem is in PSPACE-that is, can be solved in polynomial space. The main technical result of the paper states that, for certain finite presentations of groups-which include the Baumslag-Solitar one-relator groups and free products of cyclic groups-the bounded word problem and the precise word problem can be solved in polylogarithmic space. Using techniques he calls calculus of brackets, he obtains polylogarithmic space bounds for the computational complexity of the diagram problem for free groups, for the width problem for elements of free groups, and for computation of the area defined by polygonal singular closed curves in the plane. He also obtains polynomial time bounds for these problems. Annotation ©2020 Ringgold, Inc., Portland, OR (protoview.com)
S. V. Ivanov, University of Illinois, Urbana, IL.