Muutke küpsiste eelistusi

E-raamat: Braids, Conformal Module, Entropy, and Gromov's Oka Principle

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2360
  • Ilmumisaeg: 31-Jan-2025
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031672880
  • Formaat - PDF+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Mathematics 2360
  • Ilmumisaeg: 31-Jan-2025
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783031672880

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book studies the relation between conformal invariants and dynamical invariants and their applications, taking the reader on an excursion through a wide range of topics. The conformal invariants, called here the conformal modules of conjugacy classes of elements of the fundamental group, were proposed by Gromov in the case of the twice punctured complex plane. They provide obstructions to Gromov's Oka Principle. The invariants of the space of monic polynomials of degree n appeared earlier in relation to Hilbert's 13th Problem, and are called the conformal modules of conjugacy classes of braids.





Interestingly, the conformal module of a conjugacy class of braids is inversely proportional to a popular dynamical invariant, the entropy, which was studied in connection with Thurston's celebrated theory of surface homeomorphisms. This result, proved here for the first time, is another instance of the numerous manifestations of the unity of mathematics, and it has applications.





After prerequisites on Riemann surfaces, braids, mapping classes and elements of Teichmüller theory, a detailed introduction to the entropy of braids and mapping

classes is given, with thorough, sometimes new proofs.





Estimates are provided of Gromov's conformal invariants of the twice punctured complex plane and it is shown that the upper and lower bounds differ by universal multiplicative constants. These imply estimates of the entropy of any pure three-braid, and yield quantitative statements on the limitations of Gromov's Oka Principle in the sense of finiteness theorems, using conformal invariants which are related to elements of the fundamental group (not merely to conjugacy classes). Further applications of the concept of conformal module are discussed.  Aimed at graduate students and researchers, the book proposes several research problems.





 
1. Introduction.-
2. Riemann Surfaces, Braids, Mapping Classes, and
Teichmueller Theory.-
3. The entropy of surface homeomorphisms.-
4. Conformal
invariants of homotopy classes of curves. The Main theorem.-
5. Reducible
pure braids. Irreducible nodal components, irreducible braid components, and
the proof of the Main Theorem.-
6. The general case. Irreducible nodal
components, irreducible braid components, and the proof of the Main Theorem.-
7. The conformal module and holomorphic families of polynomials.- 
8.
Gromovs Oka Principle and conformal module.-
9. Gromovs Oka Principle for
(g, m)-fiber bundles.-
10. Fundamental groups and bounds for the extremal
length.-
11. Counting functions.-
12. Riemann surfaces of second kind and
finiteness theorems.- A. Several complex variables.- B. A Lemma on
Conjugation.- C. Koebes Theorem.- Index.- References.