Muutke küpsiste eelistusi

E-raamat: Brittle Fracture and Damage of Brittle Materials and Composites: Statistical-Probabilistic Approaches

(CNRS Research Director (Exceptional Class), ENS Cachan, CNRS, Université Paris Saclay)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 16-Mar-2016
  • Kirjastus: ISTE Press Ltd - Elsevier Inc
  • Keel: eng
  • ISBN-13: 9780081011614
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 107,84 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 16-Mar-2016
  • Kirjastus: ISTE Press Ltd - Elsevier Inc
  • Keel: eng
  • ISBN-13: 9780081011614
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Flaws are the principal source of fracture in many materials, whether brittle or ductile, whether nearly homogeneous or composite. They are introduced during either fabrication or surface preparation or during exposure to aggressive environments (e. g. oxidation, shocks). The critical flaws act as stress concentrators and initiate cracks that propagate instantaneously to failure in the absence of crack arrest phenomena as encountered in brittle materials.

This book explores those brittle materials susceptible to crack arrest and the flaws which initiate crack induced damage. A detailed description of microstructural features covering numerous brittle materials, including ceramics, glass, concrete, metals, polymers and ceramic fibers to help you develop your knowledge of material fracture.

Brittle Failure and Damage for Brittle Materials and Composites outlines the technological progress in this field and the need for reliable systems with high performances to help you advance the development of new structural materials, creating advantages of low density, high resistance to elevated temperatures and aggressive environments, and good mechanical properties.

  • The effects of flaw populations on fracture strength
  • The main statistical-probabilistic approaches to brittle fracture
  • The use of these methods for predictions of failure and effects induced by flaw populations
  • The application of these methods to component design
  • The methods of estimation of statistical parameters that define flaw strength distributions
  • The extension of these approaches to damage and failure of continuous fiber reinforced ceramic matrix composites

Muu info

This book tackles the theoretical and experimental aspects of material fracture, proposing concepts, tools and methods to solve problems of physical flaws and the multiaxial elemental strength concept
Introduction xi
Chapter 1 Flaws in Materials
1(34)
1.1 Introduction
1(1)
1.2 The theoretical strength and the intrinsic strength of materials
2(3)
1.3 The fracture strength of materials
5(6)
1.3.1 Influence of a crack and a flaw
6(1)
1.3.2 The resistance to crack extension
7(4)
1.4 The flaws
11(6)
1.4.1 Submicrostructure flaws
11(1)
1.4.2 Processing flaws
12(3)
1.4.3 Machining flaws
15(1)
1.4.4 Flaws caused by in-service usage
16(1)
1.5 Severity of individual flaws
17(4)
1.5.1 Severity of cracks and voids
17(2)
1.5.2 Severity of inclusions
19(2)
1.6 Influence of flaw populations
21(9)
1.6.1 Strength variability
22(1)
1.6.2 Size effects
23(1)
1.6.3 Influence of stress field
24(2)
1.6.4 Influence of loading conditions
26(2)
1.6.5 Influence of multimodal flaw populations
28(1)
1.6.6 Effects of environment
29(1)
1.7 Consequences of failure predictions
30(5)
Chapter 2 Statistical-Probabilistic Approaches to Brittle Fracture: The Weibull Model
35(16)
2.1 Introduction
35(1)
2.2 Weibull statistical model
36(6)
2.2.1 The weakest link concept
36(1)
2.2.2 Probability of fracture under a uniaxial tensile stress
37(2)
2.2.3 Statistical parameters
39(3)
2.3 Probability of fracture for a uniaxial non-uniform tensile stress field
42(1)
2.4 Probability of fracture from the surface of specimens
43(1)
2.5 Weibull multiaxial analysis
43(3)
2.6 Multiaxial approach based on the principle of independent action of stresses
46(1)
2.7 Summary on the Weibull statistical model
47(4)
Chapter 3 Statistical-Probabilistic Theories Based on Flaw Size Density
51(12)
3.1 Introduction
51(1)
3.2 Failure probability
52(2)
3.3 Expressions for flaw size density and distribution
54(4)
3.3.1 Description of complete flaw population
54(3)
3.3.2 Statistical distribution functions for extreme values
57(1)
3.4 Introduction of stress state
58(1)
3.5 Models
59(2)
3.5.1 Power-law flaw size density
59(1)
3.5.2 The De Jayatilaka-Trustrum approach
60(1)
3.6 Limits of the flaw size density-based approaches
61(2)
Chapter 4 Statistical-Probabilistic Theories Based on Flaw Strength Density
63(28)
4.1 Introduction
63(1)
4.2 Basic equations of failure probability in the elemental strength approach
64(2)
4.3 Elemental strength model for a uniform uniaxial stress state: Argon-McClintock development
66(2)
4.4 The Batdorf model
68(8)
4.4.1 The model
68(4)
4.4.2 Examples of determination of failure probability using the Batdorf model: unixial, equibiaxial and equitriaxial tension
72(3)
4.4.3 Discussion: comparison with the Weibull model
75(1)
4.5 The multiaxial elemental strength model
76(15)
4.5.1 The multiaxial elemental strength
76(2)
4.5.2 The flaw density function (volume analysis)
78(2)
4.5.3 Determination of local stress components
80(1)
4.5.4 Probability of failure from surface flaws
81(1)
4.5.5 Determination of functions Iv(...) and Is(...)
82(5)
4.5.6 Comparison with the Weibull model
87(4)
Chapter 5 Effective Volume or Surface Area
91(18)
5.1 Introduction
91(1)
5.2 The Weibull model: the effective volume for a uniaxial stress state
91(2)
5.3 The multiaxial elemental strength model: the effective volume for a multiaxial stress state
93(3)
5.4 Analytic expressions for failure probability, effective volume or surface area (Weibull theory)
96(5)
5.4.1 Compression
96(1)
5.4.2 3-point bending
97(1)
5.4.3 4-point bending
98(3)
5.5 Some remarkable exact expressions for failure probability, effective volume or surface area (multiaxial elemental strength theory)
101(6)
5.5.1 Uniaxial tension
101(1)
5.5.2 Non-uniform uniaxial stress states
102(1)
5.5.3 Multiaxial stress states: uniform stress state
103(4)
5.5 Conclusion
107(2)
Chapter 6 Size and Stress-State Effects on Fracture Strength
109(24)
6.1 Introduction
109(1)
6.2 Uniform uniaxial stress state
109(5)
6.2.1 Effects of stressed volume or surface size on strengths
109(3)
6.2.2 Respective effects of volume and surface on fracture
112(2)
6.3 Non-uniform uniaxial stress state
114(3)
6.4 Multiaxial stress state: multiaxial elemental strength model
117(1)
6.5 Applications
118(13)
6.5.1 Influence of loading conditions
118(3)
6.5.2 Importance of stress effects on the fracture of fiber reinforced ceramic matrix composites
121(4)
6.5.3 Influence of volume or surface size: disadvantages and benefits
125(1)
6.5.4 Influence of shape and geometry: effects of surface-located and volume-located flaw populations
126(5)
6.6 Conclusion
131(2)
Chapter 7 Determination of Statistical Parameters
133(36)
7.1 Introduction
133(1)
7.2 Methods of determination of statistical parameters
134(8)
7.2.1 Maximum likelihood technique
135(1)
7.2.2 Method of moments
136(1)
7.2.3 Fitting theoretical distribution function to empirical one
137(1)
7.2.4 Fitting failure probability computations to empirical values
138(1)
7.2.5 Fitting the tensile behavior curve of multifilament bundles
139(1)
7.2.6 Examples
140(2)
7.3 Production of empirical data
142(2)
7.4 Bias and variability
144(10)
7.4.1 Bias of estimators and methods of estimation
145(5)
7.4.2 Variability of statistical parameters
150(3)
7.4.3 Goodness of fit
153(1)
7.5 Effect of the presence of multimodal flaw populations
154(7)
7.5.1 Exclusive populations
156(1)
7.5.2 Concurrent populations
156(1)
7.5.3 Partially concurrent populations
157(1)
7.5.4 Concurrent populations of defects: separation of data
158(2)
7.5.5 Concurrent populations of defects: maximum likelihood method
160(1)
7.6 Fractographic analysis and flaw populations
161(1)
7.7 Examples
161(8)
Chapter 8 Computation of Failure Probability: Application to Component Design
169(24)
8.1 Introduction
169(1)
8.2 Computer programs for failure predictions
170(2)
8.3 The CERAM computer program
172(4)
8.4 Validation of the CERAM computer code
176(2)
8.5 CERAM-based ceramic design
178(3)
8.6 Relation test specimen/component: identification of allowable material properties
181(4)
8.7 Determination of statistical parameters using CERAM
185(1)
8.8 Application to multimaterials and composite materials
186(5)
8.8.1 Prediction of damage by microcracking in ceramic composites
187(4)
8.9 Conclusion
191(2)
Chapter 9 Case Studies: Comparison of Failure Predictions Using the Weibull and Multiaxial Elemental Strength Models
193(40)
9.1 Introduction
193(1)
9.2 Predictions of failure under flexural load
194(20)
9.2.1 Unimodal population of surface defects
194(8)
9.2.2 Unimodal population of internal defects
202(6)
9.2.3 Bimodal population of internal and surface-located flaws
208(6)
9.3 Prediction of thermal shock failure
214(16)
9.3.1 Quenching of alumina disks
215(7)
9.3.2 Thermal fatigue
222(8)
9.4 Conclusion
230(3)
Chapter 10 Application of Statistical-Probabilistic Approaches to Damage and Fracture of Composite Materials and Structures
233(36)
10.1 Introduction
233(2)
10.2 Damage mode by successive cracking in continuous fiber reinforced composites
235(2)
10.3 Flaw populations involved in damage and pertinent flaw strength density functions
237(3)
10.4 Matrix fragmentation: series system model
240(6)
10.4.1 Uniform tensile stress state: uniaxial elemental strength approach
241(2)
10.4.2 Non-uniform stress state: multiaxial elemental strength approach
243(1)
10.4.3 Influence of flaw strength density function
244(2)
10.5 Approach based on Poisson process
246(3)
10.6 The Monte Carlo simulation method
249(1)
10.7 The fragment dichotomy-based model (parallel system)
250(6)
10.7.1 Fragmentation of fibers (uniform stress state)
251(1)
10.7.2 Fragmentation of the matrix in unidirectionally reinforced ceramic matrix composites
252(4)
10.8 Evaluation of models: comparison to experimental data
256(4)
10.9 Ultimate failure of unidirectionnally reinforced composite (Weibull model, uniform tension) in the presence of matrix damage
260(2)
10.10 Application to composites: unified model
262(4)
10.10.1 Uniform tension, unidirectional composites and the Weibull model
262(2)
10.10.2 General approach, the multiaxial elemental strength model
264(2)
10.11 Conclusion
266(3)
Bibliography 269(12)
Index 281
Jacques Lamon received an award from the Seymour Cray company in 1990 for his work on failure statistics based predictions of brittle failure. In 2006, he was elected Fellow of the American Ceramic Society. In 2007 he received the First Prize of Best Paper Awards from the American Ceramic Society. He has authored one book on the Mechanics of brittle fracture and damage, authored more than 300 technical articles on ceramics reliability, and the thermomechanical behaviour of fibre-reinforced ceramic matrix composites and contributed to/ edited 13 books; 14 conference proceedings, 3 journal special issues and more than 15 testing method standards (CEN) and presented more than 70 invited lectures. HIs current research interests include Thermomechanical behavior of composite materials, modelling of damage, fracture and durability, effects of the environment, multiscale approaches to behavior, fracture and durability and the probabilistic approaches to fracture and damage.