Preface |
|
xiii | |
|
1 Introduction: Probability and parameters |
|
|
1 | (12) |
|
|
1 | (4) |
|
1.2 Probability distributions |
|
|
5 | (2) |
|
1.3 Calculating properties of probability distributions |
|
|
7 | (1) |
|
1.4 Monte Carlo integration |
|
|
8 | (5) |
|
2 Monte Carlo simulations using BUGS |
|
|
13 | (20) |
|
|
13 | (8) |
|
|
13 | (1) |
|
2.1.2 Directed graphical models |
|
|
13 | (2) |
|
|
15 | (1) |
|
2.1.4 Running BUGS models |
|
|
16 | (1) |
|
2.1.5 Running WinBUGS for a simple example |
|
|
17 | (4) |
|
|
21 | (1) |
|
2.3 Using BUGS to simulate from distributions |
|
|
22 | (2) |
|
2.4 Transformations of random variables |
|
|
24 | (2) |
|
2.5 Complex calculations using Monte Carlo |
|
|
26 | (1) |
|
2.6 Multivariate Monte Carlo analysis |
|
|
27 | (2) |
|
2.7 Predictions with unknown parameters |
|
|
29 | (4) |
|
3 Introduction to Bayesian inference |
|
|
33 | (24) |
|
|
33 | (3) |
|
3.1.1 Bayes' theorem for observable quantities |
|
|
33 | (1) |
|
3.1.2 Bayesian inference for parameters |
|
|
34 | (2) |
|
3.2 Posterior predictive distributions |
|
|
36 | (1) |
|
3.3 Conjugate Bayesian inference |
|
|
36 | (9) |
|
|
37 | (4) |
|
3.3.2 Normal data with unknown mean, known variance |
|
|
41 | (4) |
|
3.4 Inference about a discrete parameter |
|
|
45 | (4) |
|
3.5 Combinations of conjugate analyses |
|
|
49 | (2) |
|
3.6 Bayesian and classical methods |
|
|
51 | (6) |
|
3.6.1 Likelihood-based inference |
|
|
52 | (1) |
|
|
52 | (1) |
|
3.6.3 Long-run properties of Bayesian methods |
|
|
53 | (1) |
|
3.6.4 Model-based vs procedural methods |
|
|
54 | (1) |
|
3.6.5 The "likelihood principle" |
|
|
55 | (2) |
|
4 Introduction to Markov chain Monte Carlo methods |
|
|
57 | (24) |
|
|
57 | (5) |
|
4.1.1 Single-parameter models |
|
|
57 | (2) |
|
4.1.2 Multi-parameter models |
|
|
59 | (2) |
|
4.1.3 Monte Carlo integration for evaluating posterior integrals |
|
|
61 | (1) |
|
4.2 Markov chain Monte Carlo methods |
|
|
62 | (8) |
|
|
63 | (1) |
|
4.2.2 Gibbs sampling and directed graphical models |
|
|
64 | (4) |
|
4.2.3 Derivation of full conditional distributions in BUGS |
|
|
68 | (1) |
|
|
68 | (2) |
|
|
70 | (1) |
|
|
71 | (6) |
|
4.4.1 Detecting convergence/stationarity by eye |
|
|
72 | (1) |
|
4.4.2 Formal detection of convergence/stationarity |
|
|
73 | (4) |
|
4.5 Efficiency and accuracy |
|
|
77 | (2) |
|
4.5.1 Monte Carlo standard error of the posterior mean |
|
|
77 | (1) |
|
4.5.2 Accuracy of the whole posterior |
|
|
78 | (1) |
|
|
79 | (2) |
|
|
81 | (22) |
|
5.1 Different purposes of priors |
|
|
81 | (1) |
|
5.2 Vague, "objective," and "reference" priors |
|
|
82 | (7) |
|
|
82 | (1) |
|
5.2.2 Discrete uniform distributions |
|
|
83 | (1) |
|
5.2.3 Continuous uniform distributions and Jeffreys prior |
|
|
83 | (1) |
|
5.2.4 Location parameters |
|
|
84 | (1) |
|
|
84 | (1) |
|
|
85 | (2) |
|
|
87 | (1) |
|
5.2.8 Distributions on the positive integers |
|
|
88 | (1) |
|
5.2.9 More complex situations |
|
|
89 | (1) |
|
5.3 Representation of informative priors |
|
|
89 | (6) |
|
5.3.1 Elicitation of pure judgement |
|
|
90 | (3) |
|
5.3.2 Discounting previous data |
|
|
93 | (2) |
|
5.4 Mixture of prior distributions |
|
|
95 | (2) |
|
|
97 | (6) |
|
|
103 | (18) |
|
6.1 Linear regression with normal errors |
|
|
103 | (4) |
|
6.2 Linear regression with non-normal errors |
|
|
107 | (2) |
|
6.3 Non-linear regression with normal errors |
|
|
109 | (3) |
|
6.4 Multivariate responses |
|
|
112 | (2) |
|
6.5 Generalised linear regression models |
|
|
114 | (4) |
|
6.6 Inference on functions of parameters |
|
|
118 | (1) |
|
|
119 | (2) |
|
|
121 | (16) |
|
|
121 | (5) |
|
7.1.1 Tables with one margin fixed |
|
|
122 | (3) |
|
7.1.2 Case-control studies |
|
|
125 | (1) |
|
7.1.3 Tables with both margins fixed |
|
|
126 | (1) |
|
|
126 | (6) |
|
|
126 | (2) |
|
7.2.2 Non-conjugate analysis parameter constraints |
|
|
128 | (1) |
|
7.2.3 Categorical data with covariates |
|
|
129 | (2) |
|
7.2.4 Multinomial and Poisson regression equivalence |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
132 | (2) |
|
|
134 | (3) |
|
8 Model checking and comparison |
|
|
137 | (48) |
|
|
137 | (1) |
|
|
138 | (2) |
|
|
140 | (7) |
|
8.3.1 Standardised Pearson residuals |
|
|
140 | (2) |
|
8.3.2 Multivariate residuals |
|
|
142 | (1) |
|
8.3.3 Observed p-values for distributional shape |
|
|
143 | (2) |
|
8.3.4 Deviance residuals and tests of fit |
|
|
145 | (2) |
|
8.4 Predictive checks and Bayesian p-values |
|
|
147 | (10) |
|
8.4.1 Interpreting discrepancy statistics --- how big is big? |
|
|
147 | (1) |
|
8.4.2 Out-of-sample prediction |
|
|
148 | (1) |
|
8.4.3 Checking functions based on data alone |
|
|
148 | (4) |
|
8.4.4 Checking functions based on data and parameters |
|
|
152 | (3) |
|
8.4.5 Goodness of fit for grouped data |
|
|
155 | (2) |
|
8.5 Model assessment by embedding in larger models |
|
|
157 | (2) |
|
8.6 Model comparison using deviances |
|
|
159 | (10) |
|
8.6.1 pD: The effective number of parameters |
|
|
159 | (2) |
|
|
161 | (3) |
|
8.6.3 Alternative measures of the effective number of parameters |
|
|
164 | (1) |
|
8.6.4 DIC for model comparison |
|
|
165 | (2) |
|
8.6.5 How and why does WinBUGS partition DIC and pD? |
|
|
167 | (1) |
|
8.6.6 Alternatives to DIC |
|
|
168 | (1) |
|
|
169 | (4) |
|
8.7.1 Lindley-Bartlett paradox in model selection |
|
|
171 | (1) |
|
8.7.2 Computing marginal likelihoods |
|
|
172 | (1) |
|
|
173 | (4) |
|
8.8.1 Bayesian model averaging |
|
|
173 | (1) |
|
8.8.2 MCMC sampling over a space of models |
|
|
173 | (2) |
|
8.8.3 Model averaging when all models are wrong |
|
|
175 | (1) |
|
|
176 | (1) |
|
8.9 Discussion on model comparison |
|
|
177 | (1) |
|
|
178 | (7) |
|
8.10.1 Identification of prior-data conflict |
|
|
179 | (1) |
|
8.10.2 Accommodation of prior-data conflict |
|
|
180 | (5) |
|
|
185 | (34) |
|
|
185 | (8) |
|
9.1.1 Missing response data |
|
|
186 | (3) |
|
9.1.2 Missing covariate data |
|
|
189 | (4) |
|
|
193 | (2) |
|
|
195 | (6) |
|
|
201 | (3) |
|
|
204 | (2) |
|
9.5.1 Specifying a new sampling distribution |
|
|
204 | (1) |
|
9.5.2 Specifying a new prior distribution |
|
|
205 | (1) |
|
9.6 Censored, truncated, and grouped observations |
|
|
206 | (5) |
|
9.6.1 Censored observations |
|
|
206 | (2) |
|
9.6.2 Truncated sampling distributions |
|
|
208 | (1) |
|
9.6.3 Grouped, rounded, or interval-censored data |
|
|
209 | (2) |
|
9.7 Constrained parameters |
|
|
211 | (3) |
|
9.7.1 Univariate fully specified prior distributions |
|
|
211 | (1) |
|
9.7.2 Multivariate fully specified prior distributions |
|
|
211 | (3) |
|
9.7.3 Prior distributions with unknown parameters |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
215 | (4) |
|
|
219 | (34) |
|
|
219 | (4) |
|
|
223 | (4) |
|
10.2.1 Unit-specific parameters |
|
|
223 | (1) |
|
10.2.2 Parameter constraints |
|
|
223 | (2) |
|
10.2.3 Priors for variance components |
|
|
225 | (2) |
|
10.3 Hierarchical regression models |
|
|
227 | (10) |
|
|
230 | (7) |
|
10.4 Hierarchical models for variances |
|
|
237 | (3) |
|
10.5 Redundant parameterisations |
|
|
240 | (2) |
|
10.6 More general formulations |
|
|
242 | (1) |
|
10.7 Checking of hierarchical models |
|
|
242 | (7) |
|
10.8 Comparison of hierarchical models |
|
|
249 | (3) |
|
10.8.1 "Focus": The crucial element of model comparison in hierarchical models |
|
|
250 | (2) |
|
|
252 | (1) |
|
|
253 | (44) |
|
|
253 | (4) |
|
11.1.1 Parametric survival regression |
|
|
254 | (3) |
|
|
257 | (5) |
|
|
262 | (11) |
|
11.3.1 Intrinsic conditionally autoregressive (CAR) models |
|
|
263 | (1) |
|
11.3.2 Supplying map polygon data to WinBUGS and creating adjacency matrices |
|
|
264 | (4) |
|
11.3.3 Multivariate CAR models |
|
|
268 | (1) |
|
|
269 | (1) |
|
11.3.5 Poisson-gamma moving average models |
|
|
269 | (1) |
|
11.3.6 Geostatistical models |
|
|
270 | (3) |
|
|
273 | (5) |
|
|
273 | (1) |
|
11.4.2 Generalised evidence synthesis |
|
|
274 | (4) |
|
11.5 Differential equation and pharmacokinetic models |
|
|
278 | (2) |
|
11.6 Finite mixture and latent class models |
|
|
280 | (6) |
|
11.6.1 Mixture models using an explicit likelihood |
|
|
283 | (3) |
|
11.7 Piecewise parametric models |
|
|
286 | (5) |
|
11.7.1 Change-point models |
|
|
286 | (2) |
|
|
288 | (1) |
|
11.7.3 Semiparametric survival models |
|
|
288 | (3) |
|
11.8 Bayesian nonparametric models |
|
|
291 | (6) |
|
11.8.1 Dirichlet process mixtures |
|
|
293 | (1) |
|
11.8.2 Stick-breaking implementation |
|
|
293 | (4) |
|
12 Different implementations of BUGS |
|
|
297 | (32) |
|
12.1 Introduction --- BUGS engines and interfaces |
|
|
297 | (1) |
|
12.2 Expert systems and MCMC methods |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
300 | (15) |
|
12.4.1 Using WinBUGS: compound documents |
|
|
301 | (1) |
|
|
301 | (3) |
|
12.4.3 Using the WinBUGS graphical interface |
|
|
304 | (4) |
|
|
308 | (1) |
|
|
308 | (2) |
|
12.4.6 Interfaces with other software |
|
|
310 | (1) |
|
|
311 | (2) |
|
|
313 | (2) |
|
|
315 | (5) |
|
12.5.1 Differences from WinBUGS |
|
|
317 | (1) |
|
|
317 | (1) |
|
|
318 | (1) |
|
12.5.4 Parallel computation |
|
|
319 | (1) |
|
|
320 | (9) |
|
12.6.1 Extensibility: modules |
|
|
321 | (1) |
|
12.6.2 Language differences |
|
|
321 | (3) |
|
12.6.3 Other differences from WinBUGS |
|
|
324 | (1) |
|
12.6.4 Running JAGS from the command line |
|
|
325 | (1) |
|
12.6.5 Running JAGS from R |
|
|
326 | (3) |
|
Appendix A Bugs language syntax |
|
|
329 | (8) |
|
|
329 | (1) |
|
|
329 | (2) |
|
A.2.1 Standard distributions |
|
|
329 | (1) |
|
A.2.2 Censoring and truncation |
|
|
330 | (1) |
|
A.2.3 Non-standard distributions |
|
|
331 | (1) |
|
A.3 Deterministic functions |
|
|
331 | (1) |
|
|
331 | (1) |
|
|
331 | (1) |
|
|
332 | (1) |
|
|
332 | (1) |
|
A.5 Multivariate quantities |
|
|
333 | (1) |
|
|
334 | (1) |
|
A.6.1 Functions as indices |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
335 | (1) |
|
|
335 | (2) |
|
Appendix B Functions in BUGS |
|
|
337 | (6) |
|
|
337 | (1) |
|
B.2 Trigonometric functions |
|
|
337 | (1) |
|
|
337 | (3) |
|
B.4 Distribution utilities and model checking |
|
|
340 | (1) |
|
B.5 Functionals and differential equations |
|
|
341 | (1) |
|
|
342 | (1) |
|
Appendix C Distributions in BUGS |
|
|
343 | (14) |
|
C.1 Continuous univariate, unrestricted range |
|
|
343 | (2) |
|
C.2 Continuous univariate, restricted to be positive |
|
|
345 | (4) |
|
C.3 Continuous univariate, restricted to a finite interval |
|
|
349 | (1) |
|
C.4 Continuous multivariate distributions |
|
|
350 | (1) |
|
C.5 Discrete univariate distributions |
|
|
351 | (3) |
|
C.6 Discrete multivariate distributions |
|
|
354 | (3) |
Bibliography |
|
357 | (16) |
Index |
|
373 | |