Muutke küpsiste eelistusi

E-raamat: Building the Future Internet through FIRE: 2016 FIRE Book - a Research and Experimentation based Approach

Edited by (European Commission, Belgium), Edited by (Saxion University of Applied Sciences, Netherlands), Edited by (Open University, United Kingdom), Edited by (Polytechnic Institute of NYU,), Edited by (IT Innovation, United Kingdom), Edited by (National University of Ireland Galway, Ireland)
  • Formaat - PDF+DRM
  • Hind: 104,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate.
Dedications xxiii
Acknowledgements xxv
Editors Biography xxvii
Foreword xxxi
List of Figures xxxvii
List of Tables xlvii
Part I: The Next Generation Internet with Fire
1 European Challenges for Experimental Facilities
3(40)
1.1 Evolution of Experimentation Facilities into Open Innovation Ecosystems for the Future Internet
3(4)
1.2 Support, Continuity and Sustainability: The NITOS Testbed Example
7(8)
1.2.1 NITOS Future Internet Facility Overview
7(1)
1.2.2 NITOS Evolution and Growth
8(2)
1.2.3 Facilitating User's Experience
10(3)
1.2.4 Exploitation of NITOS and Users Statistics
13(2)
1.2.5 References
15(1)
1.3 Experimentation: Vision and Roadmap
15(24)
1.3.1 Envisioning Evolution of Experimentation Facilities into the Future
16(4)
1.3.2 Vision and Opportunities of OMA LwM2M/oneM2M and Its Role in the Monitoring and Deployment of Large Scale Unmanned Networks
20(2)
1.3.3 Large Deployments with Low-power, Long-range, Low-cost
22(22)
1.3.3.1 LoRa technology
23(1)
1.3.3.2 LoRaWAN
24(1)
1.3.3.3 Simplified deployment scenarios
25(14)
1.4 Conclusions
39(3)
References
42(1)
2 Next Generation Internet Research and Experimentation
43(44)
2.1 Experimentation Facilities in H2020: Strategic Research and Innovation Agenda Contributions
44(12)
2.1.1 European Ecosystem Experimentation Impacts
46(3)
2.1.2 Drivers Transforming the Next Generation Internet Experimentation
49(11)
2.1.2.1 Intelligent spaces
49(2)
2.1.2.2 Cooperative autonomous machines
51(1)
2.1.2.3 Collective human experience
52(3)
2.1.2.4 Key networking technologies
55(1)
2.2 Policy Recommendations for Next Generation Internet Experimentation
56(2)
2.3 References
58(2)
2.4 Experimentation Facilities Evolution towards Ecosystems for Open Innovation in the Internet of Future
60(6)
2.4.1 Changes in the FIRE Portfolio
60(1)
2.4.2 Technological Innovation and Demand Pull
60(2)
2.4.3 Positioning of FIRE
62(1)
2.4.4 Bridging the Gaps between Demands and Service Offer
62(1)
2.4.5 Testbed-as-a-Service
63(2)
2.4.6 Future Scenarios for FIRE
65(1)
2.5 FIRE Vision and Mission in H2020
66(1)
2.6 From Vision to Strategic Objectives
67(6)
2.6.1 Strategic Objectives
68(1)
2.6.2 FIRE's Enablers
69(4)
2.7 FIRE Roadmap towards 2020
73(5)
2.7.1 Milestones
73(4)
2.7.2 Towards Implementation - Resolving the Gaps
77(1)
2.8 Main Conclusions and Recommendations
78(3)
2.8.1 FIRE Vision and Positioning
79(1)
2.8.2 Strategic Challenges for Evolution of FIRE
79(1)
2.8.3 Action Plans to Realize the Strategic Directions
80(1)
2.9 Final Remarks
81(2)
References to AmpliFIRE Reports and White Papers
83(4)
Part II: Experimentation Facilities Best Practices and Flagship Projects
3 Fed4FIRE - The Largest Federation of Testbeds in Europe
87(24)
3.1 Introduction
87(1)
3.2 Federated Experimentation Facilities
88(5)
3.2.1 Requirements from Industry and Research
88(2)
3.2.2 Establishing Fed4FIRE Federation of Testbeds
90(1)
3.2.3 Experimentation Facilities in Fed4FIRE
91(2)
3.3 Framework for Large-scale Federation of Testbeds
93(7)
3.3.1 Framework Architecture and Tools
93(4)
3.3.1.1 Experiment lifecycle
93(1)
3.3.1.2 Resource discovery, specification, reservation and provisioning
94(1)
3.3.1.2.1 Architectural components
94(2)
3.3.1.3 Other functionality
96(1)
3.3.2 Federating Experimentation Facilities
97(2)
3.3.2.1 Classes of testbeds
97(1)
3.3.2.2 Types of federation
97(1)
3.3.2.3 Workflow for federation
98(1)
3.3.3 Federation Tools
99(1)
3.3.3.1 Portal
99(1)
3.3.3.2 jFed
99(1)
3.3.3.3 NEPI
99(1)
3.3.3.4 YourEPM
100(1)
3.4 Federated Testing in Fed4FIRE
100(5)
3.4.1 Overview of Experiments on Fed4FIRE
100(1)
3.4.2 Complexity of the Fed4FIRE Experiments
100(2)
3.4.3 Value to the Experimenter
102(1)
3.4.4 Support Provided by the Federation to SMEs
103(1)
3.4.5 Added Value of the Federation
104(1)
3.5 Operating the Federation
105(3)
3.5.1 Federation Model, Structure and Roles
105(1)
3.5.2 Financial Approach of the Federation
106(1)
3.5.3 Organization of the Federation
107(1)
3.6 Summary
108(3)
4 A Platform for 4G/5G Wireless Networking Research, Targeting the Experimentally-Driven Research Approach - FLEX
111(44)
4.1 Introduction
111(2)
4.2 Problem Statement
113(4)
4.2.1 FLEX Testbeds
114(3)
4.2.1.1 NITOS testbed
114(1)
4.2.1.2 w-iLab.t testbed
115(1)
4.2.1.3 OpenAirinterface testbed
116(1)
4.2.1.4 PerformNetworks testbed
116(1)
4.2.1.5 FUSECO playground
117(1)
4.3 Background and State-of-the-Art on Control and Management of Testbeds
117(5)
4.3.1 Slice-based Federation Architecture (SFA)
118(1)
4.3.2 control and Management Framework (OMF)
118(3)
4.3.3 OML
121(1)
4.4 Approach
122(2)
4.5 Technical Work
124(13)
4.5.1 Control Plane Tools
124(2)
4.5.1.1 NITOS Scheduler
124(1)
4.5.1.2 jFed
124(1)
4.5.1.3 NITOS brokering
125(1)
4.5.2 Experimental Plane Tools
126(3)
4.5.2.1 The FLEX LTErf service
126(2)
4.5.2.2 OMF extensions
128(1)
4.5.3 Monitoring Applications
129(2)
4.5.3.1 FLEX QoE tool
129(2)
4.5.3.2 FLEX_problems
131(1)
4.5.3.3 FLEX_netchanges
131(1)
4.5.4 Handover Toolkit
131(4)
4.5.4.1 S1-based handovers
132(1)
4.5.4.2 X2-based handovers
132(1)
4.5.4.3 Cross-technology Inter-RAT SDN based handovers
133(2)
4.5.5 Mobility Emulation Platforms
135(1)
4.5.6 Functional Federation
136(1)
4.6 Results and/or Achievements
137(11)
4.6.1 Semantic Based Coordination for LTE in Unlicensed Bands
137(5)
4.6.2 FLOW LTE to Wi-Fi Offloading Experiments
142(6)
Discussion
148(1)
Conclusions
149(1)
References
149(6)
5 MONROE: Measuring Mobile Broadband Networks in Europe
155(34)
5.1 Introduction
156(2)
5.2 Background and State of the Art
158(2)
5.3 MONROE Approach and Key Features
160(3)
5.4 MONROE System Design
163(2)
5.5 Experiment Deployment
165(8)
5.5.1 MONROE as a Fed4FIRE Federated Project
167(1)
5.5.2 User Authentication
168(1)
5.5.3 The Experimenters Portal (MONROE User Access Client)
169(1)
5.5.4 MONROE Scheduler
170(3)
5.6 Network Measurements and Analytics with MONROE
173(9)
5.6.1 MONROE Monitoring Experiments
175(3)
5.6.2 Network Analytics with MONROE
178(4)
5.7 User Experiments
182(1)
5.8 Conclusions
183(1)
References
184(5)
6 PerformNetworks: A Testbed for Exhaustive Interoperability and Performance Analysis for Mobile Networks
189(22)
6.1 Introduction
190(1)
6.2 Problem Statement
191(1)
6.3 Background and State of the Art
192(3)
6.3.1 Research Tools for Wireless Communications
192(2)
6.3.2 Wireless Testbed Platforms
194(1)
6.4 Approach
195(2)
6.5 Technical Work
197(3)
6.5.1 T2010 Standard Si Interface Extension
197(1)
6.5.2 Fleximon
198(1)
6.5.3 TestelDroid
199(1)
6.5.4 FIRE Technology
199(1)
6.6 Results and Achievements
200(5)
6.6.1 SME Experiments
200(2)
6.6.2 FIRE Projects
202(1)
6.6.3 Research Activities
203(2)
6.7 Discussion
205(1)
6.8 Conclusion
206(1)
References
207(4)
7 Large Scale Testbed for Intercontinental Smart City Experiments and Pilots - Results and Experiences
211(32)
7.1 Introduction
212(1)
7.2 TRESCIMO Architecture
213(5)
7.2.1 Smart Environmental Monitoring Trial
215(1)
7.2.2 Smart Energy Trial
216(2)
7.3 Trial Results
218(17)
7.3.1 Smart Environmental Monitoring Trial
219(10)
7.3.1.1 Scenario and experiments
219(5)
7.3.1.2 Evaluation results
224(1)
7.3.1.2.1 Visualisation and monitoring of the data transmitted by the sensor devices
224(1)
7.3.1.2.2 Performance of the DTN and wake-up system
225(1)
7.3.1.2.3 Consumption of the wake-up sensor devices
227(1)
7.3.1.2.4 Performance of the data collection process and device update capabilities
228(1)
7.3.2 Smart Energy Trial
229(6)
7.3.2.1 Scenario and experiments
230(1)
7.3.2.2 Evaluation results
231(1)
7.3.2.2.1 Energy consumption awareness
231(1)
7.3.2.2.2 Behavioural change
231(1)
7.3.2.2.3 Mobile app
232(1)
7.3.2.2.4 Technology performance metrics
234(1)
7.4 Discussion
235(4)
7.4.1 Smart Environmental Monitoring Trial Observations
235(2)
7.4.2 Smart Energy Trial Observations
237(2)
7.4.3 General Observation
239(1)
7.5 Conclusion
239(1)
Acknowledgments
240(1)
References
240(3)
8 BonFIRE: A Multi-Cloud Experimentation-as-a-Service Ecosystem
243(24)
8.1 Introduction
243(1)
8.2 A Cloud and Services Experimentation Service
244(2)
8.3 Technical Approach
246(10)
8.4 Federation of Heterogeneous Cloud and Networking Testbeds
256(3)
8.5 Federation within the Broader FIRE Ecosystem
259(2)
8.6 Pioneering Open Access Experimentation and Sustainability
261(4)
8.7 Conclusions and Outlook
265(1)
Acknowledgments
266(1)
9 EXPERIMEDIA - A Multi-Venue Experimentation Service Supporting Technology Innovation through New Forms of Social Interaction and User Experience
267(20)
9.1 Introduction
267(1)
9.2 Networked Multimedia Systems
268(1)
9.3 A Multi-Venue Media Experimentation Service
269(3)
9.4 Smart Venues and Experiments
272(3)
9.5 Users at the Heart of the System
275(3)
9.6 Making a Difference in the Real-World
278(2)
9.7 Real-Time Interactive and Immersive Media
280(1)
9.8 Economic and Social Viability of Data Value Chains
281(2)
9.9 Innovation whilst Respecting Privacy
283(2)
9.10 Conclusions
285(1)
Acknowledgments
286(1)
References
286(1)
10 Cross-Domain Interoperability Using Federated Interoperable Semantic IoT/Cloud Testbeds and Applications: The FIESTA-IoT Approach
287(36)
10.1 Introduction
287(4)
10.2 Federated IoT Testbeds and Deployment of Experimental Facilities
291(2)
10.3 Cross-Domain Interoperability
293(5)
10.4 Experimentation as a Service
298(2)
10.5 IoT Data Marketplace
300(1)
10.6 FIESTA Platform Services and Tools
301(10)
10.6.1 FIESTA Approach on Global Market Confidence Programme on Interoperability Service
302(1)
10.6.2 FIESTA Approach on Linking and Reasoning over IoT Data Streams Services
303(1)
10.6.3 FIESTA Approach on Federating IoT Stream Data Management Services
304(2)
10.6.4 FIESTA Approach on Semantic Interoperability for IoT/Cloud Data Streams Tools
306(2)
10.6.5 FIESTA Approach on Semantic Interoperability for IoT/Cloud Resources Tools
308(1)
10.6.6 FIESTA Approach on Testbeds Integration and Federation Tools
309(2)
10.7 FIESTA-IoT Architecture
311(1)
10.8 Conclusions
312(3)
Acknowledgments
315(1)
References
315(8)
11 Combining Internet of Things and Crowdsourcing for Pervasive Research and End-user Centric Experimental Infrastructures (IoT Lab)
323(32)
11.1 Introduction
323(1)
11.2 Approach
324(1)
11.3 Architecture
325(2)
11.4 Heterogeneous Tesbeds Integration
327(3)
11.5 IoT Lab Smart Phone Application
330(4)
11.6 Testbed as a Service
334(5)
11.7 Virtual & Modelled Testbeds
339(3)
11.8 Privacy by Design
342(4)
11.9 Incentive Mechanisms and Model
346(3)
11.10 Examples of IoT Lab Based Researches
349(3)
11.11 Conclusions
352(2)
References
354(1)
12 Describing the Essential Ingredients for an Open, General-Purpose, Shared and Both Large-Scale and Sustainable Experimental Facility (OpenLab)
355(30)
12.1 Introduction
355(1)
12.2 Problem Statement
356(2)
12.3 Background and State of the Art
358(3)
12.3.1 Federation in the Control and the Experimental Plane
358(1)
12.3.2 Wireless Testbeds
359(1)
12.3.3 Wired and Emulation Testbeds
360(1)
12.4 Approach
361(2)
12.5 OpenLab Prototypes
363(4)
12.5.1 Wireless Prototypes
364(1)
12.5.1.1 NITOS (Network Implementation Testbed using Open Source code)
364(1)
12.5.1.2 w-iLab.t
364(1)
12.5.1.3 DOTSEL
365(1)
12.5.2 Wired Prototypes
365(2)
12.5.2.1 PLE (PlanetLab Europe)
365(1)
12.5.2.2 HEN (Heterogeneous Experimental Network)
365(1)
12.5.2.3 The WIT IMS testbed
366(1)
12.5.2.4 The University of Patras IMS testbed
366(1)
12.6 Technical Work
367(7)
12.6.1 Federation in the Control and the Experimental Plane
367(3)
12.6.2 Wireless Testbeds
370(3)
12.6.3 Wired Testbeds
373(1)
12.7 Results and/or Achievements
374(7)
12.7.1 OpenLab Main Outputs
375(3)
12.7.2 The OneLab Experimental Facility
378(10)
12.7.2.1 OneLab Consortium
379(1)
12.7.2.2 OneLab Portal
380(1)
12.8 Conclusions
381(1)
References
382(3)
13 Wireless Software and Hardware Platforms for Flexible and Unified Radio and Network Control (WiSHFUL)
385(40)
13.1 Introduction
385(2)
13.2 Background
387(1)
13.3 Motivating Scenarios
388(8)
13.3.1 Interference Management among Overlapping Cells
389(1)
13.3.2 Co-existence of Heterogeneous Technologies
390(3)
13.3.3 Load and Interference Aware MAC Adaptation
393(1)
13.3.4 In-Situ Testing
393(3)
13.4 WiSHFUL Software Architecture
396(8)
13.4.1 Major Entities
397(2)
13.4.2 User Control
399(1)
13.4.3 Hardware Interfacing
400(1)
13.4.4 Basic Services and Capabilities
401(3)
13.4.4.1 Node discovery
402(1)
13.4.4.2 Execution semantics
402(1)
13.4.4.3 Time-scheduled execution of UPI functions
402(1)
13.4.4.4 Remote execution of UPI functions
402(1)
13.4.4.5 Time synchronization
403(1)
13.4.4.6 Packet forgery, sniffing and injection
403(1)
13.4.4.7 Deployment of new UPI functions
403(1)
13.4.4.8 Global control
403(1)
13.4.4.9 Remote injection and execution of user code
403(1)
13.5 Implementation of Motivating Scenarios and Results
404(15)
13.5.1 Interference Management Among Overlapping Cells
404(7)
13.5.1.1 Hidden node detection
404(1)
13.5.1.1.1 Application of WiSHFUL framework
405(1)
13.5.1.1.2 Results
405(1)
13.5.1.2 Hybrid TDMA MAC
406(1)
13.5.1.2.1 Application of WiSHFUL presentation of UPIs used
407(1)
13.5.1.2.2 Results
408(3)
13.5.2 Co-existence of Heterogeneous Technologies
411(2)
13.5.2.1 Configuration options for the basic showcase
411(1)
13.5.2.2 Configuration options for the advanced showcase
412(1)
13.5.2.3 Results
412(1)
13.5.3 Load and Interference Aware MAC Adaptation
413(3)
13.5.3.1 Application of the WiSHFUL framework
414(1)
13.5.3.2 Results
414(2)
13.5.4 Wireless Portable Testbed
416(13)
13.5.4.1 Portable testbed setup
416(2)
13.5.4.2 Hardware & packaging
418(1)
13.6 Conclusion
419(1)
Acknowledgments
420(1)
References
420(5)
Part III: Research Projects And Cases Using Experimentation Testbeds
14 Estimating the Dimension of Your Wireless Infrastructure by Using FIRE Testbeds
425(36)
14.1 Introduction
425(2)
14.2 Problem Statement
427(2)
14.3 Background and State-of-the-Art
429(6)
14.3.1 Background
429(5)
14.3.2 State-of-the-Art
434(1)
14.4 Approach
435(4)
14.4.1 Methodology
435(1)
14.4.2 Associated Work Plan
436(1)
14.4.3 Experimentation Methodology
437(2)
14.5 Technical Work
439(8)
14.5.1 Set-up of the Experiment
439(5)
14.5.2 Preparatory Tests
444(1)
14.5.3 Laboratory Use Cases
445(1)
14.5.3.1 Wi-Fi experiments
445(1)
14.5.3.2 LTE experiments
445(1)
14.5.3.3 WiMAX experiments
446(1)
14.5.4 Resources and Tools Used
446(1)
14.6 Results and/or Achievements
447(9)
14.6.1 Technical Results Obtained
447(9)
14.6.1.1 Preparatory tests
447(2)
14.6.1.2 Wi-Fi experiments
449(1)
14.6.1.2.1 Wi-Fi 001
449(1)
14.6.1.2.2 Wi-Fi 002
450(1)
14.6.1.2.3 Wi-Fi 003
451(1)
14.6.1.3 LTE experiments
451(1)
14.6.1.3.1 LTE 001
451(1)
14.6.1.3.2 LTE 002
452(1)
14.6.1.3.3 LTE 003
453(1)
14.6.1.4 WiMAX experiments
454(1)
14.6.1.4.1 WiMAx 001
454(1)
14.6.1.4.2 WiMAx 002
455(1)
14.6.1.4.3 WiMAx 003
456(1)
14.7 Discussion
456(3)
14.7.1 Small File: From 0.5 to 2 Megabytes
457(1)
14.7.2 Normal File Size: From 8 to 12 Megabytes
458(1)
14.7.3 Large File Size: From 30 to 50 Megabytes
458(1)
14.8 Conclusions
459(2)
15 An Experiment Description Language for Supporting Mobile IoT Applications
461(30)
15.1 Introduction
462(2)
15.2 Problem Statement
464(1)
15.3 Background and State of the Art
465(3)
15.4 The Proposed Approach
468(7)
15.4.1 The RAWFIE Platform
468(2)
15.4.2 The RAWFIE EDL
470(3)
15.4.3 The EDL Textual Editor
473(1)
15.4.4 The EDL Visual Editor
474(1)
15.4.5 The Validator and the Generator
475(1)
15.5 Technical Details
475(4)
15.5.1 The EDL Grammar
475(1)
15.5.2 The EDL Validator and Generator
476(2)
15.5.3 The EDL Editors
478(1)
15.6 Case Study: Create and Launch an Experiment
479(5)
15.7 Discussion and Future Extensions
484(2)
15.8 Conclusions
486(1)
References
486(5)
16 Recursive InterNetwork Architecture, Investigating RINA as an Alternative to TCP/IP (IRATI)
491(30)
16.1 Introduction
491(4)
16.1.1 RINA Overview
492(3)
16.2 IRATI Goals
495(1)
16.3 Approach
496(2)
16.4 Discussion of Technical Work and Achievements
498(20)
16.4.1 Enhancements of the RINA Specifications and Reference Model
498(5)
16.4.1.1 Shim DIF over 802.1Q layers
498(2)
16.4.1.2 Shim DIF for hypervisors
500(1)
16.4.1.3 Link state routing policy
501(2)
16.4.2 RINA Implementation Activities
503(4)
16.4.2.1 Implementation goals and major design choices
503(2)
16.4.2.2 Software architecture overview
505(2)
16.4.2.3 Open source
507(1)
16.4.3 Experimental evaluation of RINA on the FIRE infrastructure
507(9)
16.4.3.1 Experimental evaluation of the shim DIF for hypervisors
507(3)
16.4.3.2 Evaluation of the link-state routing policy
510(2)
16.4.3.3 Performance evaluation on the iMinds OFELIA island
512(3)
16.4.3.4 Validation of location-independence
515(1)
16.4.4 Feedback to the OFELIA Facility
516(10)
16.4.4.1 IRATI VM image and XEN servers
516(1)
16.4.4.2 VLAN translator box
516(2)
16.5 Conclusions
518(1)
References
519(2)
17 FORGE: An eLearning Framework for Remote Laboratory Experimentation on FIRE Testbed Infrastructure
521(40)
17.1 Introduction
522(2)
17.2 Problem Statement
524(2)
17.3 Background and State of the Art
526(5)
17.3.1 Learning Design
526(4)
17.3.2 Online Labs
530(1)
17.4 The FORGE Framework
531(4)
17.5 Courseware and Evaluation
535(20)
17.5.1 The FORGE Methodology
535(4)
17.5.2 Learning Analytic s
539(2)
17.5.3 WLAN and LTE (iMinds)
541(6)
17.5.4 TCP Congestion Control and Metro MOOC (UPMC)
547(4)
17.5.5 OFDM (Trinity College Dublin)
551(4)
17.6 Discussion
555(1)
17.7 Conclusion
556(1)
References
557(4)
18 Triangle: 5G Applications and Devices Benchmarking
561(14)
18.1 Introduction
562(1)
18.2 Motivation
563(2)
18.3 Approach: Simplicity Operations for Testbed End Users
565(1)
18.4 Technical Test Framework Approach and Methodology
566(5)
18.4.1 TRIANGLE Components
566(2)
18.4.2 TRIANGLE's Components Orchestration
568(3)
18.5 Testing Workflow Based on FIRE Technology
571(1)
18.6 Conclusion
571(1)
References
572(3)
Part IV: Research and Experimentation Projects Recently Funded
19 Recursive InterNetwork Architecture (ARCFIRE, Large-scale RINA benchmark on FIRE)
575(12)
19.1 Introduction
575(1)
19.2 Problem Statement
576(2)
19.3 Background and State of the Art
578(2)
19.4 Approach
580(2)
19.5 Technical Work
582(3)
19.6 Conclusion
585(2)
20 ARMOUR
587(8)
20.1 Project Objectives
587(2)
20.2 Project Concept
589(2)
20.3 Project Approach
591(4)
21 Enabling a Mobility Back-End as a Robust Service (EMBERS)
595(8)
22 F-Interop - Online Platform of Interoperability and Performance Tests for the Internet of Things
603(10)
22.1 Introduction
603(1)
22.2 Context and Problematic
604(1)
22.3 Technical Approach and Outcomes
604(2)
22.3.1 Online Testing Tools
605(1)
22.3.2 Support and to IoT Standardization and Industry
605(1)
22.3.3 Flexible Testing Schemes
606(1)
22.4 Architectural View
606(3)
22.4.1 F-Interop Platform and Test Tools
606(1)
22.4.2 F-Interop Architecture
607(2)
22.5 Open Call
609(1)
22.6 Conclusion
610(3)
23 Q4Health: Mission Critical Communications Over LTE and Future 5G Technologies
613(14)
23.1 Introduction
614(1)
23.2 Motivation
615(1)
23.3 Experiments Focused on the Radio Access
616(3)
23.4 Experiments Focused on the EPC
619(3)
23.5 Conclusion
622(1)
References
622(5)
Part V: International Collaboration on Research and Experimentation
24 WAZIUP: Open Innovation Platform for IoT-Big Data in Sub-Sahara Africa
627(18)
24.1 Introduction
627(3)
24.2 Objective
630(2)
24.3 Technical Solution
632(2)
24.4 Applications Cases
634(1)
24.4.1 Precision Agriculture
634(1)
24.4.2 Cattle Rustling
634(1)
24.4.3 Logistics and Transport, Saint-Louis, Senegal
634(1)
24.4.4 Fish Farming, Kumasi, Ghana
634(1)
24.4.5 Environment and Urban Agriculture
635(1)
24.5 WAZIUP Platform as a Service (PaaS)
635(3)
24.5.1 Local and Global Clouds
637(1)
24.6 WAZIUP Architecture
638(2)
24.6.1 Functional Overview
638(1)
24.6.2 Components
639(1)
24.7 WAZIUP Test-Beds
640(2)
24.8 Conclusion
642(3)
25 Understanding the Challenges in the Optical/Wireless Converged Communications Federated Union of Telecommunications Research Facilities for an EU-Brazil Open Laboratory (FUTEBOL)
645(18)
25.1 Introduction
646(2)
25.2 Problem Statement
648(1)
25.3 Background and State-of-the-Art
649(4)
25.4 FUTEBOL Approach
653(3)
25.5 Pushing the Status Quo of Optical/Wireless Solutions
656(3)
25.5.1 Licensed Shared Access for 4G Mobile Networks with QoE Support
656(1)
25.5.2 The Design of Optical Backhaul for Next-Generation Wireless
657(1)
25.5.3 The Interplay between Bursty, Low Data Rate Wireless and Optical Network Architectures
658(1)
25.6 Conclusions
659(1)
Acknowledgments
659(1)
References
659(4)
26 ECIAO: Bridging EU-China Future Internet Common Activities and Opportunities
663(6)
26.1 Introduction
663(1)
26.2 Problem Statement
663(1)
26.3 Background
664(1)
26.4 Approach
665(1)
26.5 Achievements
666(1)
26.6 Conclusions
667(2)
27 EU-US Collaboration in FIRE
669(8)
27.1 History
669(1)
27.2 Liaison - Mission Statement
669(1)
27.3 GENI-FIRE Collaboration Workshops
670(1)
27.4 FIRE-GENI Summer Schools (FGRE)
671(2)
27.5 Dissemination at the Geni Engineering Conferences (GEC)
673(1)
27.6 Standardization
674(1)
27.7 Some Technical Highlights from the EU-US Collaboration
674(1)
27.8 Conclusion
675(2)
28 FESTIVAL: Heterogeneous Testbed Federation Across Europe and Japan
677(16)
28.1 Introduction
678(1)
28.2 FESTIVAL Experimental Testbeds
679(2)
28.2.1 Open Data Oriented Testbeds
679(1)
28.2.2 IoT Oriented Testbeds
679(1)
28.2.3 IT Oriented Testbed
680(1)
28.2.4 Living Lab Testbed
680(1)
28.3 EaaS Model and FESTIVAL Federation
681(2)
28.4 FESTIVAL Reference Implementation
683(4)
28.4.1 Aggregators
683(2)
28.4.2 FESTIVAL Resource Model
685(1)
28.4.3 FESTIVAL EaaS Platform
686(1)
28.5 FESTIVAL Portal and Experiment Workflow
687(1)
28.6 FESTIVAL Use Case Experiments
688(2)
28.7 Conclusions
690(1)
Acknowledgments
691(1)
References
691(2)
29 TRESCIMO: Towards Software-Based Federated Internet of Things Testbeds
693(24)
29.1 Introduction
694(1)
29.2 Problem Statement
695(1)
29.3 Background and State of the Art
695(1)
29.4 Smart City Testbed Design
696(5)
29.4.1 Design Considerations
696(2)
29.4.1.1 Federation
697(1)
29.4.1.2 Heterogeneity
697(1)
29.4.1.3 Scale
697(1)
29.4.1.4 Reliability
697(1)
29.4.1.5 Resource management
697(1)
29.4.1.6 Flexibility
698(1)
29.4.2 Architecture Overview
698(3)
29.5 Technical Work/Implementation
701(6)
29.5.1 Cloud Management - OpenStack
701(1)
29.5.2 Experimentation Management - FITeagle
702(3)
29.5.3 NFV Management and Orchestration (MANO) - OpenBaton
705(2)
29.5.4 M2M Platform - OpenMTC/Open5GMTC
707(1)
29.6 Results and/or Achievements
707(5)
29.6.1 Integration of the Toolkits
708(2)
29.6.2 Smart City Experimentation
710(17)
29.6.2.1 Smart buildings
710(1)
29.6.2.2 Energy management
711(1)
29.6.2.3 Education
711(1)
29.7 Discussions and Conclusions
712(2)
Acknowledgments
714(1)
References
714(3)
30 Federated Experimentation Infrastructure Interconnecting Sites from Both Europe and South Korea (SmartFIRE)
717
30.1 Introduction
717(2)
30.2 Problem Statement
719(3)
30.3 Background and State of the Art
722(2)
30.4 Approach
724(3)
30.5 Technical Work
727(7)
30.5.1 ICN-OMF
727(1)
30.5.2 MOFI-OMF
728(1)
30.5.3 Open-vSwitch (OvS)
729(1)
30.5.4 Click Modular Router (Click)
730(1)
30.5.5 FlowVisor
731(2)
30.5.6 Open WiFi+
733(1)
30.5.7 SFA and MySlice
733(1)
30.6 Results and/or Achievements
734(6)
30.6.1 Multi-Domain, ID-Based Communications and Seamless Mobility with MOFI
734(4)
30.6.2 Content-Based Video Communications on Wireless Access Network
738(2)
30.7 Discussion
740(1)
30.8 Conclusions
741(1)
References
741
Martin Serrano, Nikolaos Isaris, Hans Schaffers