Muutke küpsiste eelistusi

E-raamat: Building Tissues: An Engineer's Guide to Regenerative Medicine

  • Formaat: 233 pages
  • Sari: Biomedical Engineering
  • Ilmumisaeg: 08-Nov-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9780429768743
  • Formaat - PDF+DRM
  • Hind: 63,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 233 pages
  • Sari: Biomedical Engineering
  • Ilmumisaeg: 08-Nov-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9780429768743

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Tissue engineering uniquely applies concepts and techniques from biology and engineering in order to heal or produce new tissues after disease or traumatic injury. A successful tissue engineer must have knowledge of cellular biology, cell signaling, extracellular matrix development, and tissue structure and integrate it with the application of stresses and strains, mass transfer, mechanical properties, and heat transfer. In order to train the next generation of successful tissue engineers, this text gives the reader a background in both the engineering and biology associated with tissue engineering.

In reading this text, students will learn about these two different areas of study and how they can be integrated with one another to understand tissues in the human body and solve biomedical problems.











Students will be introduced to definitions of engineering concepts, the practical use of stress-strain relationships, material strength, mass transfer, and heat transfer.





Through examples and problems, students will apply engineering equations to medical and biomedical situations including actual tissue engineering problems.





Students will be introduced to a variety of cell and tissue types and be given the background information necessary to apply the use of cells to the growth and development of new tissues.





Students will learn how to select the proper material for the replacement of a particular tissue and why it is important to know about the mechanical properties and degradability of a material prior to implantation.





Students will learn how the application of force, material selection, and changes in temperature can positively or negatively affect cell behavior and tissue development.





Tissue structure will be described and students will learn about the direct relationship between the structure of a tissue and its properties.
Preface xiii
Acknowledgments xv
Authors xvii
Chapter 1 Stress And Strain Analyses 1(38)
1.1 Introduction
1(1)
1.2 Calculating Forces
1(2)
1.3 Calculating Stresses
3(5)
1.3.1 Normal Stresses
5(3)
1.4 Deformation And Strain
8(5)
1.5 Poisson's Ratio
13(3)
1.6 Shear Stresses, Torsion, And Bending
16(1)
1.7 Shear Stress
16(5)
1.7.1 Shearing Strain
17(1)
1.7.2 Internal Shear And Relating Shear And Normal Stresses
18(3)
1.8 Stresses In Bending
21(6)
1.8.1 Bending Of A Cantilever Beam
26(1)
1.9 Stresses In Torsion
27(7)
1.9.1 Torsional Shear Strain
32(2)
1.10 Importance To Tissue Engineering
34(1)
Questions
34(3)
References
37(2)
Chapter 2 Heat Transfer and Diffusion 39(10)
2.1 Introduction
39(1)
2.2 Heat Transfer
39(2)
2.3 Mass Transfer Through Diffusion
41(5)
2.4 Importance To Tissue Engineering
46(1)
Questions
47(1)
References
48(1)
Chapter 3 Biomolecules and Tissue Properties 49(28)
3.1 Introduction
49(1)
3.2 Proteins
49(12)
3.2.1 Collagen
50(11)
3.2.1.1 Collagen: Structure
53(1)
3.2.1.2 Collagen: Synthesis
54(1)
3.2.1.3 Collagen: Fibril Assembly
55(2)
3.2.1.4 Collagen: Properties
57(1)
3.2.1.5 Collagen: Crosslinks
57(1)
3.2.1.6 Collagen: Mineralization
58(1)
3.2.1.7 Collagen: Diseased States
58(1)
3.2.1.8 Collagen: Types
59(2)
3.3 Elastin
61(4)
3.3.1 Elastin: Structure
61(2)
3.3.2 Elastin: Assembly
63(1)
3.3.3 Elastin: Degradation
63(1)
3.3.4 Elastin: Arteries
64(1)
3.3.5 Elastin: Diseased States
65(1)
3.4 Proteoglycans
65(6)
3.5 Biological Mineral (Calcium Phosphate)
71(4)
3.5.1 Biological Mineral: The Mineralization Process
71(1)
3.5.2 Biological Mineral: Nucleation
72(1)
3.5.3 Biological Mineral: Other Molecules
73(1)
3.5.4 Biological Mineral: Strain
74(1)
3.5.5 Biological Mineral: Diseased States
74(1)
3.5.6 Biological Mineral: Properties
75(1)
Questions
75(1)
References
76(1)
Chapter 4 Tissue Structure and Function 77(46)
4.1 Introduction
77(1)
4.2 Types Of Tissues
77(2)
4.3 Blood Vessels
79(7)
4.3.1 Arteries
80(2)
4.3.2 Veins
82(2)
4.3.3 Capillaries
84(2)
4.4 Bone
86(5)
4.4.1 Types of Bone
88(2)
4.4.2 Human Bone Structure
90(1)
4.4.3 Bone Generation Cycle
91(1)
4.5 Ligament And Tendon
91(4)
4.5.1 Ligament and Tendon Composition
91(1)
4.5.2 Ligament and Tendon Structure and Behavior
92(1)
4.5.3 Tendons
92(1)
4.5.4 Ligament
93(1)
4.5.5 Ligament and Tendon Cells and Composition
94(1)
4.5.6 Ligament and Tendon Damage: Sprain Compared with Strain
95(1)
4.6 Skin
95(4)
4.6.1 Skin Components
96(1)
4.6.2 Epidermis
97(1)
4.6.3 Dermis
98(1)
4.6.4 Hypodermis
99(1)
4.7 Cartilage
99(7)
4.7.1 Types of Cartilage
100(5)
4.7.1.1 Hyaline Cartilage
101(2)
4.7.1.2 Elastic Cartilage
103(1)
4.7.1.3 Fibrocartilage
103(2)
4.7.2 Osteoarthritis
105(1)
4.8 Nervous Tissue
106(7)
4.8.1 Neuroglia
107(1)
4.8.2 Spinal Cord
108(2)
4.8.3 The Brain
110(2)
4.8.3.1 Brainstem
111(1)
4.8.3.2 Cerebellum
111(1)
4.8.3.3 Cranial Nerves
111(1)
4.8.3.4 Cerebrum
111(1)
4.8.3.5 Lobes of the Brain
111(1)
4.8.3.6 Thalamus and Pituitary Gland
112(1)
4.8.4 Response to Injury
112(1)
4.9 Muscle
113(6)
4.9.1 Skeletal Muscle
113(2)
4.9.2 Skeletal Muscle Internal Arrangement
115(2)
4.9.3 Cardiac Muscle
117(1)
4.9.4 Smooth Muscle
118(1)
4.10 Importance To Tissue Engineering
119(1)
4.11 Questions
119(1)
References
120(3)
Chapter 5 Materials for Tissue Engineering 123(24)
5.1 Introduction
123(1)
5.2 Synthetic Polymers
123(8)
5.2.1 Types of Polymers
126(5)
5.2.1.1 Aliphatic Polyesters
127(2)
5.2.1.2 Polyanhydrides
129(1)
5.2.1.3 Poly(amino acids)
129(1)
5.2.1.4 Polyphosphazenes
130(1)
5.3 Biomacromolecules
131(7)
5.3.1 Polysaccharides
132(2)
5.3.1.1 Polysaccharides: Hyaluronic Acid
132(1)
5.3.1.2 Polysaccharides: Chitin and Chitosan
133(1)
5.3.1.3 Polysaccharides: Cellulose
134(1)
5.3.2 Proteins
134(2)
5.3.2.1 Proteins: Collagen
135(1)
5.3.2.2 Proteins: Gelatin
135(1)
5.3.2.3 Proteins: Albumin
136(1)
5.3.3 Other Natural Materials
136(2)
5.3.3.1 Calcium Phosphate
136(1)
5.3.3.2 Decellularized Tissue (Allografts and Xenografts)
136(2)
5.4 Metals
138(6)
5.4.1 Metals: Bonding
138(1)
5.4.2 Metals: Structure
139(1)
5.4.3 Metals: Crystals
139(1)
5.4.4 Metals: Imperfections
140(1)
5.4.5 Metals: Devices and Fabrication
140(1)
5.4.6 Metals: Altering Properties
141(1)
5.4.7 Metals: Types
142(5)
5.4.7.1 Stainless Steel
143(1)
5.4.7.2 Cobalt-Based
143(1)
5.4.7.3 Titanium-Based
143(1)
5.5 Importance To Tissue Engineering
144(1)
Questions
144(1)
References
144(3)
Chapter 6 Fabrication: Various Techniques 147(16)
6.1 Introduction
147(1)
6.2 Electrospinning
147(5)
6.2.1 Special Types of Electrospinning
150(1)
6.2.2 Applications of Nanofibers in Tissue Engineering
151(1)
6.3 Microspheres/Nanospheres
152(1)
6.4 Hydrogels
153(3)
6.5 3D Printing
156(4)
6.5.1 Fused Deposition Modeling (FDM)
156(1)
6.5.2 Stereolithography
156(2)
6.5.2.1 Limitations of Photolithography
157(1)
6.5.3 Direct Light Processing
158(1)
6.5.4 Selective Laser Sintering
158(1)
6.5.5 Direct Metal Laser Sintering
159(1)
6.5.6 Selective Laser Melting
159(1)
6.5.7 Electron Beam Melting
159(1)
6.5.8 Material Jetting (MJ)
159(1)
6.5.9 Drop on Demand
160(1)
6.5.10 Laminated Object Manufacturing
160(1)
6.5.11 Binder Jetting
160(1)
6.6 Importance To Tissue Engineering
160(1)
Questions
160(1)
References
161(2)
Chapter 7 Cellular Biology in Tissue Engineering 163(46)
7.1 Introduction
163(1)
7.2 Biology And Background
164(7)
7.2.1 Introduction
164(1)
7.2.2 What Are Stem Cells?
164(7)
7.3 Choice Of Cells For Use In Tissue Engineering
171(9)
7.3.1 Bone Marrow-Derived Mesenchymal Stem Cells
171(1)
7.3.2 Cord-Derived Stem Cells
171(1)
7.3.3 Amniotic Membrane-Derived Stem Cells
172(1)
7.3.4 Placenta-Derived Stem Cells
172(2)
7.3.5 Adipose-Derived Stem Cells
174(2)
7.3.6 Embryonic Stem Cells
176(1)
7.3.7 Induced Pluripotent Stem Cells
176(1)
7.3.8 Cell Isolation
177(1)
7.3.9 Culture Conditions
178(1)
7.3.10 Pluripotent Stem Cells
179(1)
7.3.11 Mesenchymal Stem Cells
180(1)
7.4 Primary Cells
180(1)
7.4.1 Characteristics of Primary Cells
181(1)
7.5 Cell Lines
181(1)
7.5.1 Cell Lines
181(1)
7.5.2 Complications of Cell Lines
181(1)
7.6 Biology Of Cell Rejection
182(5)
7.6.1 Immunobiology of Rejection
182(1)
7.6.1.1 Genetic Background
182(1)
7.6.2 Mechanisms of Rejection
183(1)
7.6.2.1 Sensitization Stage
183(1)
7.6.2.2 Effector Stage
183(1)
7.6.2.3 Direct Pathway
183(1)
7.6.2.4 Indirect Pathway
184(1)
7.6.3 Role of Natural Killer Cells
184(1)
7.6.4 Clinical Stages of Rejection
184(1)
7.6.4.1 Hyper-Acute Rejection
184(1)
7.6.4.2 Acute Rejection
184(1)
7.6.4.3 Humoral Rejection
184(1)
7.6.4.4 Chronic Rejection
184(1)
7.6.5 Transplant Tolerance and Minimizing Rejection
185(1)
7.6.6 Prevention and Treatment of Graft Rejection
185(1)
7.6.7 Graft-versus-Host Disease and Bone Marrow Transplantation
185(1)
7.6.8 Immunosuppressive Agents
186(1)
7.6.9 Antibodies
186(1)
7.6.10 Immunomodulation by Mesenchymal Stem Cells
187(1)
7.7 Growth Factors
187(3)
7.7.1 What Are Growth Factors?
187(1)
7.7.2 Common Growth Factors Used in Tissue Engineering
188(1)
7.7.3 Growth Factor Delivery
189(1)
7.7.4 Therapeutic Uses of Hematopoietic Growth Factors
189(1)
7.8 Use Of Stem Cells In Tissue Engineering
190(3)
7.8.1 Introduction
190(1)
7.8.2 Stem Cells
191(1)
7.8.3 Scaffolding Techniques
191(1)
7.8.4 Cell Sources
191(1)
7.8.5 Somatic Cell Nuclear Transfer (Therapeutic Cloning)
191(1)
7.8.6 Parthenogenesis
192(1)
7.8.7 Stem Cell Genomics
192(1)
7.9 Use Of Stimulatory Influences In Tissue Engineering
193(3)
7.9.1 MSC Stimulation
193(1)
7.9.2 Electrical Stimulation
193(1)
7.9.3 Mechanical Stimulation
194(1)
7.9.4 Thermal Stimulation
195(1)
7.9.5 Biological Stimulation
195(1)
7.9.6 Other Forms of Energy
196(1)
7.9.6.1 Ultrasound Stimulation
196(1)
7.9.6.2 Electromagnetic Stimulation
196(1)
7.10 Electrical Stimulation
196(3)
7.10.1 Electronic Stimulation
196(1)
7.10.2 Electrothermal Therapy
197(1)
7.10.3 Low-Frequency Electrical Stimulus
197(1)
7.10.4 Biomineralized Materials
198(1)
7.11 Mechanical Stimulation
199(2)
7.11.1 Introduction
199(1)
7.11.2 Low Magnitude Mechanical Signals
199(1)
7.11.3 Mechanical Forces
200(1)
7.12 Thermal Stimulation
201(1)
7.12.1 Introduction
201(1)
7.12.2 Thermal Therapy
201(1)
7.12.3 Heat Shock Therapy
202(1)
Questions
202(1)
References
202(7)
Index 209
Joseph W. Freeman is an Associate Professor in the Department of Biomedical Engineering at Rutgers University. He has worked in the areas of tendon development, the structure and mechanics of type I collagen, collagen mineralization and mechanical characterization, molecular modeling, soft tissue mechanics, and musculoskeletal tissue engineering. His primary research focus now lie in the design and fabrication of novel, functional scaffolds for the repair of musculoskeletal tissues, the use of novel biomaterials in tissue regeneration, developing therapies for tissue strengthening, collagen molecular modeling, and the use of tissue engineering techniques in cancer research. He has published over 100 papers and delivered numerous conference presentations in these areas. He has taught the first course in tissue engineering at Rutgers for the past seven years.

Debakrata Banerjee is an Associate Professor in the Department of Pharmacology at the Robert Wood Johnson Medical Center. He has been an active researcher in tissue engineering and now stem cell technologies over the past twelve years. His focus is on molecular mechanisms that use stem cells, which are proving to be highly beneficial to tissue regeneration. He has published over 150 papers in tissue engineering and regenerative medicine journals.