Muutke küpsiste eelistusi

E-raamat: Business Process Management: 22nd International Conference, BPM 2024, Krakow, Poland, September 1-6, 2024, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 22nd International Conference on Business Process Management, BPM 2024, which took place in Krakow, Poland, in September 2024. 





The 29 full papers included in this book were carefully reviewed and selected from 144 submissions. They were organized in topical sections as follows: Foundations; Engineering; and Management. 











 
Foundations.- Optimizing Resource-Driven Process Configuration through
Genetic Algorithms.- Data Petri Nets meet Probabilistic Programming.-
Conformance Checking of Fuzzy Logs against Declarative Temporal
Specifications.- Object Synchronizations and Specializations with Silent
Objects in Object-Centric Petri Nets.- Glocal Conformance Checking.- On the
interplay between BPMN collaborations and the physical environment.- Super
Variants.- Repairing Process Models through Simulation and Explainable AI.-
Improving Process Discovery Using Translucent Activity Relationships.-
Engineering.- Optimizing Resource Allocation Policies in Real-World Business
Processes using Hybrid Process Simulation and Deep Reinforcement Learning.-
Exploiting general purpose big-data frameworks in process mining: the case of
declarative process discovery.- Attention Please: What Transformer Models
Really Learn for Process Prediction.- GEDI: Generating Event Data with
Intentional Features for Benchmarking Process Mining.- Efficient Training of
Recurrent Neural Networks for Remaining Time Prediction in Predictive Process
Monitoring.- Whats Behind the Screen? Unveiling UI Hierarchies in
Process-Related UI Logs.- Looking for Change: A Computer Vision Approach for
Concept Drift Detection in Process Mining.- Mining Behavioral Patterns for
Conformance Diagnostics.- xSemAD: Explainable Semantic Anomaly Detection in
Event Logs Using Sequence-to-Sequence Models.- CoSMo: a Framework to
Instantiate Conditioned Process Simulation Models.- Experience Based Resource
Allocation for Remaining Time Optimization.- Uncovering patterns for local
explanations in outcome-based Predictive Process Monitoring.- Beyond Log and
Model Moves in Conformance Checking: Discovering Process-Level Deviation
Patterns.- Management.- Explanatory Capabilities of Large Language Models in
Prescriptive Process Monitoring.- Categories of Business Value of Robotic
Process Automation: A Study of Benefits and Challenges.- Anticipating Data
Inaccuracy Consequences in Business Processes: An Empirical Study.- SCP-BP
Framework: Situational Crime Prevention for Managing Data Breaches in
Business Processes.- LLM-Assisted Optimization of Waiting Time in Business
Processes: A Prompting Method.- Exploring the Cognitive Effects of Ambiguity
in Process Models.- Techno-empowerment of Process Automation: Understanding
Employee Acceptance of Autonomous AI in Business Processes.