Muutke küpsiste eelistusi

E-raamat: C-Projective Geometry

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 112,71 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"We develop in detail the theory of (almost) c-projective geometry, a natural analogue of projective differential geometry adapted to (almost) complex manifolds. We realise it as a type of parabolic geometry and describe the associated Cartan or tractor connection. A Kahler manifold gives rise to a c-projective structure and this is one of the primary motivations for its study. The existence of two or more Kahler metrics underlying a given c-projective structure has many ramifications, which we explore in depth. As a consequence of this analysis, we prove the Yano- Obata Conjecture for complete Kahler manifolds: if such a manifold admits a one parameter group of c-projective transformations that are not affine, then it is complex projective space, equipped with a multiple of the Fubini-Study metric"--

Calderbank and colleagues develop in detail the theory of (almost) c-projective geometry, a natural analogue of projective differential geometry adapted to (almost) complex manifolds. Realizing it as a type of parabolic geometry, they describe the associated Cartan or tractor connection. A Kahler manifold gives rise to a c-projective structure, they say, and this is one of the primary motivations for its study. The existence of two or more Kahler metrics underlying a given c-projective structure has many ramifications, which they explore in depth. As a consequence, they prove the Yano-Obata Conjecture for complete Kahler manifolds. Annotation ©2021 Ringgold, Inc., Portland, OR (protoview.com)
David M Calderbank, University of Bath, United Kingdom

Michael G. Eastwood, University of Adelaide, Australia.

Vladimir S. Matveev, FSU Jena, Germany.

Katharina Neusser, Charles University, Prague, The Czech Republic