Muutke küpsiste eelistusi

E-raamat: Cable System Transients: Theory, Modeling and Simulation

  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 15-May-2015
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118702161
  • Formaat - PDF+DRM
  • Hind: 156,78 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 15-May-2015
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118702161

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A systematic and comprehensive introduction to electromagnetic transient in cable systems, written by the internationally renowned pioneer in this field

• Presents a systematic and comprehensive introduction to electromagnetic transient in cable systems
• Written by the internationally renowned pioneer in the field
• Thorough coverage of the state of the art on the topic, presented in a well-organized, logical style, from fundamentals and practical applications
• A companion website is available

Arvustused

Because the authors have included fundamental background theory, and much practical information, this book will be considered a reference standard on power cable transients for many years.  (IEEE Electrical Engineering magazine, 1 January 2016)

About the Authors xi
Preface xiii
Acknowledgements xv
1 Various Cables Used in Practice 1(20)
Teruo Ohno
1.1 Introduction
1(2)
1.2 Land Cables
3(8)
1.2.1 Introduction
3(1)
1.2.2 XLPE Cables
4(5)
1.2.3 SCOF Cables
9(1)
1.2.4 HPOF Cables
10(1)
1.3 Submarine Cables
11(2)
1.3.1 Introduction
11(1)
1.3.2 HVAC Submarine Cables
11(1)
1.3.3 HVDC Submarine Cables
12(1)
1.4 Laying Configurations
13(6)
1.4.1 Burial Condition
13(1)
1.4.2 Sheath Bonding
14(5)
References
19(2)
2 Impedance and Admittance Formulas 21(42)
Akihiro Ametani
2.1 Single-core Coaxial Cable (SC Cable)
22(5)
2.1.1 Impedance
22(3)
2.1.2 Potential Coefficient
25(2)
2.2 Pipe-enclosed Type Cable (PT Cable)
27(4)
2.2.1 Impedance
27(2)
2.2.2 Potential Coefficient
29(2)
2.3 Arbitrary Cross-section Conductor
31(4)
2.3.1 Equivalent Cylindrical Conductor
31(1)
2.3.2 Examples
32(3)
2.4 Semiconducting Layer Impedance
35(12)
2.4.1 Derivation of Impedance
35(3)
2.4.2 Impedance of Two-layered Conductor
38(1)
2.4.3 Discussion of the Impedance Formula
38(2)
2.4.4 Admittance of Semiconducting Layer
40(1)
2.4.5 Wave Propagation Characteristic of Cable with Core Outer Semiconducting Layer
40(7)
2.4.6 Concluding Remarks
47(1)
2.5 Discussion of the Formulation
47(5)
2.5.1 Discussion of the Formulas
47(2)
2.5.2 Parameters Influencing Cable Impedance and Admittance
49(3)
2.6 EMTP Subroutines "Cable Constants" and "Cable Parameters"
52(2)
2.6.1 Overhead Line
52(1)
2.6.2 Underground/Overhead Cable
52(2)
Appendix 2.A Impedance of an SC Cable Consisting of a Core, a Sheath and an Armor
54(2)
Appendix 2.B Potential Coefficient
56(1)
Appendix 2.0 Internal Impedances of Arbitrary Cross-section Conductor
57(1)
Appendix 2.D Derivation of Semiconducting Layer Impedance
58(3)
References
61(2)
3 Theory of Wave Propagation in Cables 63(100)
Akihiro Ametani
3.1 Modal Theory
63(15)
3.1.1 Eigenvalues and Vectors
63(2)
3.1.2 Calculation of a Matrix Function by Eigenvalues/Vectors
65(1)
3.1.3 Direct Application of Eigenvalue Theory to a Multi-conductor System
66(1)
3.1.4 Modal Theory
67(2)
3.1.5 Formulation of Multi-conductor Voltages and Currents
69(2)
3.1.6 Boundary Conditions and Two-port Theory
71(6)
3.1.7 Problems
77(1)
3.2 Basic Characteristics of Wave Propagation on Single-phase SC Cables
78(6)
3.2.1 Basic Propagation Characteristics for a Transient
78(3)
3.2.2 Frequency-dependent Characteristics
81(3)
3.2.3 Time Response of Wave Deformation
84(1)
3.3 Three-phase Underground SC Cables
84(6)
3.3.1 Mutual Coupling between Phases
84(2)
3.3.2 Transformation Matrix
86(1)
3.3.3 Attenuation and Velocity
87(1)
3.3.4 Characteristic Impedance
88(2)
3.4 Effect of Various Parameters of an SC Cable
90(4)
3.4.1 Buried Depth h
91(1)
3.4.2 Earth Resistivity pe
91(1)
3.4.3 Sheath Thickness d
91(1)
3.4.4 Sheath Resistivity ps
91(2)
3.4.5 Arrangement of a Three-phase SC Cable
93(1)
3.5 Cross-bonded Cable
94(20)
3.5.1 Introduction of Cross-bonded Cable
94(1)
3.5.2 Theoretical Formulation of a Cross-bonded Cable
95(7)
3.5.3 Homogeneous Model of a Cross-bonded Cable
102(3)
3.5.4 Difference between Tunnel-installed and Buried Cables
105(9)
3.6 PT Cable
114(20)
3.6.1 Introduction of PT Cable
114(1)
3.6.2 PT Cable with Finite-pipe Thickness
115(13)
3.6.3 Effect of Eccentricity of Inner Conductor
128(5)
3.6.4 Effect of the Permittivity of the Pipe Inner Insulator
133(1)
3.6.5 Overhead PT Cable
133(1)
3.7 Propagation Characteristics of Intersheath Modes
134(26)
3.7.1 Theoretical Analysis of Intersheath Modes
134(10)
3.7.2 Transients on a Cross-bonded Cable
144(15)
3.7.3 Earth-return Mode
159(1)
3.7.4 Concluding Remarks
160(1)
References
160(3)
4 Cable Modeling for Transient Simulations 163(22)
Teruo Ohno
Akihiro Ametani
4.1 Sequence Impedances Using a Lumped PI-circuit Model
163(11)
4.1.1 Solidly Bonded Cables
163(4)
4.1.2 Cross-bonded Cables
167(1)
4.1.3 Derivation of Sequence Impedance Formulas
168(6)
4.2 Electromagnetic Transients Program (EMTP) Cable Models for Transient Simulations
174(1)
4.3 Dommel Model
175(1)
4.4 Semlyen Frequency-dependent Model
176(2)
4.4.1 Semlyen Model
177(1)
4.4.2 Linear Model
178(1)
4.5 Marti Model
178(1)
4.6 Latest Frequency-dependent Models
179(3)
4.6.1 Vector Fitting
179(2)
4.6.2 Frequency Region Partitioning Algorithm
181(1)
References
182(3)
5 Basic Characteristics of Transients on Single-phase Cables 185(44)
Akihiro Ametani
5.1 Single-core Coaxial (SC) Cable
185(27)
5.1.1 Experimental Observations
185(2)
5.1.2 EMTP Simulations
187(5)
5.1.3 Theoretical Analysis
192(11)
5.1.4 Analytical Evaluation of Parameters
203(1)
5.1.5 Analytical Calculation of Transient Voltages
204(7)
5.1.6 Concluding Remarks
211(1)
5.2 Pipe-enclosed Type (PT) Cable-Effect of Eccentricity
212(13)
5.2.1 Model Circuit for the EMTP Simulation
212(2)
5.2.2 Simulation Results for Step-function Voltage Source
214(4)
5.2.3 FDTD Simulation
218(1)
5.2.4 Theoretical Analysis
218(6)
5.2.5 Concluding Remarks
224(1)
5.3 Effect of a Semiconducting Layer on a Transient
225(2)
5.3.1 Step Function Voltage Applied to a 2 km Cable
225(1)
5.3.2 5 x 70µs Impulse Voltage Applied to a 40 km Cable
226(1)
References
227(2)
6 Transient on Three-phase Cables in a Real System 229(68)
Akihiro Ametani
6.1 Cross-bonded Cable
229(11)
6.1.1 Field Test on an 110 kV Oil-filled (OF) Cable
229(1)
6.1.2 Effect of Cross-bonding
229(3)
6.1.3 Effect of Various Parameters
232(5)
6.1.4 Homogeneous Model (See Section 3.5.3)
237(2)
6.1.5 PAI-circuit Model
239(1)
6.2 Tunnel-installed 275 kV Cable
240(12)
6.2.1 Cable Configuration
240(1)
6.2.2 Effect of Geometrical Parameters on Wave Propagation
241(2)
6.2.3 Field Test on 275 kV XLPE Cable
243(6)
6.2.4 Concluding Remarks
249(3)
6.3 Cable Installed Underneath a Bridge
252(10)
6.3.1 Model System
252(1)
6.3.2 Effect of an Overhead Cable and a Bridge
253(4)
6.3.3 Effect of Overhead Lines on a Cable Transient
257(5)
6.4 Cable Modeling in EMTP Simulations
262(4)
6.4.1 Marti's and Dommel's Cable Models
262(3)
6.4.2 Homogeneous Cable Model (See Section 3.5.3)
265(1)
6.4.3 Effect of Tunnel-installed Cable
265(1)
6.5 Pipe-enclosed Type (PT) Cable
266(8)
6.5.1 Field Test on a 275 kV Pressure Oil-filled (POF) Cable
266(1)
6.5.2 Measured Results
267(2)
6.5.3 FTP Simulation
269(5)
6.6 Gas-insulated Substation (GIS) - Overhead Cables
274(19)
6.6.1 Basic Characteristic of an Overhead Cable
274(1)
6.6.2 Effect of Spacer in a Bus
275(6)
6.6.3 Three-phase Underground Gas-insulated Line
281(1)
6.6.4 Switching Surges in a 500 kV GIS
282(2)
6.6.5 Basic Characteristics of Switching Surges Induced to a Control Cable
284(9)
Appendix 6.A
293(2)
Appendix 6.B
295(1)
References
295(2)
7 Examples of Cable System Transients 297(54)
Teruo Ohno
7.1 Reactive Power Compensation
297(1)
7.2 Temporary Overvoltages
298(19)
7.2.1 Series Resonance Overvoltage
298(12)
7.2.2 Parallel Resonance Overvoltage
310(4)
7.2.3 Overvoltage Caused by System Islanding
314(3)
7.3 Slow-front Overvoltages
317(24)
7.3.1 Line Energization Overvoltages from a Lumped Source
317(12)
7.3.2 Line Energization Overvoltages from a Complex Source
329(3)
7.3.3 Analysis of Statistical Distribution of Energization Overvoltages
332(9)
7.4 Leading Current Interruption
341(1)
7.5 Zero-missing Phenomenon
342(4)
7.5.1 Zero-missing Phenomenon and Countermeasures
342(2)
7.5.2 Sequential Switching
344(2)
7.6 Cable Discharge
346(1)
References
347(4)
8 Cable Transient in Distributed Generation System 351(40)
Naoto Nagaoka
8.1 Transient Simulation of Wind Farm
351(23)
8.1.1 Circuit Diagram
351(1)
8.1.2 Cable Model and Dominant Frequency
352(2)
8.1.3 Data for Cable Parameters
354(5)
8.1.4 EMTP Data Structure
359(4)
8.1.5 Results of Pre-calculation
363(1)
8.1.6 Cable Energization
364(10)
8.2 Transients in a Solar Plant
374(14)
8.2.1 Modeling of Solar Plant
374(5)
8.2.2 Simulated Results
379(9)
References
388(3)
Index 391
Akihiro Ametani, Doshisha University, Japan

Teruo Ohno, Tokyo Electric Power Company, Japan

Naoto Nagaoka, Doshisha University, Japan