Muutke küpsiste eelistusi

E-raamat: Calculus off the Beaten Path: A Journey Through Its Fundamental Ideas

  • Formaat - EPUB+DRM
  • Hind: 37,04 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook provides a gentle overview of fundamental concepts related to one-variable calculus. The original approach is a result of the author’s forty years of experience in teaching the subject at universities around the world. In this book, Dr. Zalduendo makes use of the history of mathematics and a friendly, conversational approach to attract the attention of the student, emphasizing what is more conceptually relevant and putting key notions in a historical perspective. Such an approach was conceived to help them to overcome potential difficulties in teaching and learning of this subject — caused, in many cases, by an excess of technicalities and computations.

Besides covering the core of the discipline — real number, sequences and series, functions, derivatives, integrals, convexity and inequalities — the book is enriched by “side trips” to relevant subjects not usually seen in traditional calculus textbooks, touching on topics like curvature, the isoperimetric inequality, Riemann’s rearrangement theorem, Snell’s law, Buffon’s needle problem, Gregory’s series, random walk and the Gauss curve, and more. An insightful collection of exercises and applications completes this book, making it ideal as a supplementary textbook for a calculus course or the main textbook for an honors course on the subject.

1 The Real Numbers
1(20)
The Rational Line
1(1)
Density of Q
2(1)
Some Basic Notions
3(1)
Irrationality of √2
4(1)
From Eudoxus to Dedekind
5(3)
The Real Line
8(3)
Dyadic Series---A Construction of R
11(2)
The Scarcity of Q
13(1)
The Completeness of R
14(2)
Cardinality
16(3)
Exercises
19(2)
2 Sequences and Series
21(18)
Sequences
21(1)
Limits of Sequences
22(2)
Cantor's Nested Intervals Theorem
24(1)
Subsequences
25(3)
Series
28(1)
The Harmonic Series
29(1)
Series of Positive Terms
30(2)
Series with Positive and Negative Terms
32(2)
The Riemann Series Theorem
34(2)
Absolute and Unconditional Convergence
36(1)
Exercises
36(3)
3 Functions
39(32)
The Elementary Functions
39(1)
Polynomials
40(1)
Circular Functions
40(3)
The Exponential Function: Bernoulli's Inequality
43(6)
Irrationality of e
49(1)
Convergence of Π∞k=1(1 + ak) and of Σ∞k=1 ak
50(1)
Hyperbolic Functions
51(1)
Injectivity and Inverse Functions
52(3)
Curves in the Plane: Parametrized Curves
55(1)
The Cycloid
56(1)
Pythagorean Triples
57(2)
Continuity
59(1)
Bolzano and Weierstrass
60(2)
Limits
62(1)
Limits in Ancient Greece: The Area of a Circle
62(3)
Three Important Limits
65(2)
Exercises
67(4)
4 The Derivative
71(28)
Derivative
71(1)
Tangents
72(3)
Newton-Raphson
75(2)
Derivatives of the Elementary Functions
77(2)
The Chain Rule
79(1)
Derivative of the Inverse Function
80(2)
The Derivative of a Parametrized Curve
82(2)
First Derivative, Tangent Line, and Growth
84(1)
The Mean Value Theorems
84(3)
L'Hopital's Rule
87(2)
Snell's Law
89(3)
The Brachistochrone
92(2)
Exercises
94(5)
5 The Integral
99(38)
Measure and Integral
99(6)
The Fundamental Theorem of Calculus
105(3)
A Pause for Comments
108(3)
Button's Needle
111(2)
Irrationality of π
113(1)
Improper Integrals
114(4)
Integration and Sums: Linearity of the Integral
118(1)
Uniform Convergence---The Weierstrass M-Test
118(5)
Gregory's Series
123(1)
Integration and Products: Integration by Parts
124(1)
Stirling's Formula
125(1)
Integration and Composition: Integration by Substitution
126(1)
A Note on Notation
127(1)
Length of Curves. The Catenary
128(3)
Area Enclosed by a Simple Closed Curve
131(2)
Exercises
133(4)
6 More Derivatives
137(18)
Second Derivative, Best-Fitting Parabola, and Curvature
137(1)
The Taylor Polynomial of Order Two
138(9)
The Taylor Series
147(6)
Exercises
153(2)
7 Convexity and the Isoperimetric Inequality
155(16)
The Arithmetic-Geometric Inequality
155(1)
Convexity
156(3)
Young, Holder, Jensen, Cauchy--Schwarz
159(5)
The Isoperimetric Inequality
164(4)
Exercises
168(3)
8 More Integrals
171(30)
Volume
171(3)
Double Integrals
174(1)
The Basel Problem
175(3)
Solids of Revolution
178(5)
Density Functions, Barycenter, and Expectation
183(1)
Center of Mass or Barycenter
184(4)
Pappus' Theorem
188(2)
The Method
190(2)
Surface Area
192(2)
Normal Distribution. Gauss, Laplace, and Stirling
194(4)
Exercises
198(3)
9 The Gamma Function
201(6)
The Gamma Function
201(1)
Weierstrass' Formula
202(3)
Growth of the Harmonic Series, Again
205(1)
Exercises
206(1)
Bibliography 207(2)
Index 209
Ignacio Zalduendo holds a PhD in Mathematical Sciences (1983) from the University of Buenos Aires, Argentina. He is currently a Full Professor at the Torcuato di Tella University, where he also served as vice-rector (2010-2013). His previous activities include positions as a Visiting Professor at the University of California (UCLA), Complutense University of Madrid, Spain, and Kent State University, in the USA. In 2004, he received a scholarship from the Fulbright Program. Dr. Zalduendo has published over 40 articles and has served as a reviewer for journals as the Journal of Mathematical Analysis and Applications, Annals of Mathematics, Mathematical Reviews, and zbMath. He also authored the book Matemática para Iñaki (in Spanish).