Muutke küpsiste eelistusi

E-raamat: Capacities in Complex Analysis

  • Formaat: PDF+DRM
  • Sari: Aspects of Mathematics E 14
  • Ilmumisaeg: 21-Nov-2013
  • Kirjastus: Vieweg+Teubner Verlag
  • Keel: ger
  • ISBN-13: 9783663142034
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 34,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Aspects of Mathematics E 14
  • Ilmumisaeg: 21-Nov-2013
  • Kirjastus: Vieweg+Teubner Verlag
  • Keel: ger
  • ISBN-13: 9783663142034
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The purpose of this book is to study plurisubharmonic and analytic functions in ~n using capacity theory. The case n=l has been studied for a long time and is very well understood. The theory has been generalized to mn and the results are in many cases similar to the situation in ~. However, these results are not so well adapted to complex analysis in several variables - they are more related to harmonic than plurihar­ monic functions. Capacities can be thought of as a non-linear generali­ zation of measures; capacities are set functions and many of the capacities considered here can be obtained as envelopes of measures. In the mn theory, the link between functions and capa­ cities is often the Laplace operator - the corresponding link in the ~n theory is the complex Monge-Ampere operator. This operator is non-linear (it is n-linear) while the Laplace operator is linear. This explains why the theories in mn and ~n differ considerably. For example, the sum of two harmonic functions is harmonic, but it can happen that the sum of two plurisubharmonic functions has positive Monge-Ampere mass while each of the two functions has vanishing Monge-Ampere mass. To give an example of similarities and differences, consider the following statements. Assume first that ~ is an open subset VIII of ~n and that K is a closed subset of Q. Consider the following properties that K mayor may not have.
I. Capacities.- II. Capacitability.- III.a Outer regularity.- III.b
Outer regularity (cont.).- IV. Subharmonic functions in ?n.- V.
Plurisubharmonic functions in ? n the Monge-Ampère capacity.- VI. Further
properties of the Monge-Ampère operator.- VII. Greens function.- VIII. The
global extremal function.- IX. Gamma capacity.- X. Capacities on the
boundary.- XI. Szegö kernels.- XII. Complex homomorphisms.