Muutke küpsiste eelistusi

E-raamat: Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 162,96 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A comprehensive reference on biochemistry, bioimaging, bioanalysis, and therapeutic applications of carbon nanomaterials

Carbon nanomaterials have been widely applied for biomedical applications in the past few decades, because of their unique physical properties, versatile functionalization chemistry, and biological compatibility. This book provides background knowledge at the entry level into the biomedical applications of carbon nanomaterials, focusing on three applications: bioimaging, bioanalysis, and therapy.

Carbon Nanomaterials for Bioimaging, Bioanalysis and Therapy begins with a general introduction to carbon nanomaterials for biomedical applications, including a discussion about the pros and cons of various carbon nanomaterials for the respective therapeutic applications. It then goes on to cover fluorescence imaging; deep tissue imaging; photoacoustic imaging; pre-clinical/clinical bioimaging applications; carbon nanomaterial sensors for cancer and disease diagnosis; targeted cancer therapy; and photothermal/photodynamic therapy. Each chapter briefly introduces the biomedical application and emphasizes the most appropriate carbon nanomaterial(s) for the application.

  • Provides an introduction to the biomedical applications of carbon nanomaterials for early-career scientists, as well as background and context for mid-career scientists and researchers
  • Contains four sections covering biochemistry, bioimaging, bioanalysis, and therapeutic applications of carbon nanomaterials
  • Presented by experts who have strong background in the field of nanotechnology for biomedical applications
  • Covers a hot area of research which has very unique physical properties, versatile functionalization chemistry, and biological compatibility

Carbon Nanomaterials for Bioimaging, Bioanalysis and Therapy is an excellent resource for academic researchers and industrial scientists working on preparation and bio-application of carbon nanomaterials, biomedical engineering, and nanotechnology.

List of Contributors xiii
Series Preface xix
Preface xxi
Part I: Basics of Carbon Nanomaterials 1(62)
1 Introduction to Carbon Structures
3(12)
Meng-Chih Su
Yuen Yung Hui
1.1 Carbon Age
3(1)
1.2 Classification
4(1)
1.3 Fullerene
4(2)
1.4 Carbon Nanotubes
6(4)
1.4.1 Structure
6(2)
1.4.2 Electronics
8(2)
1.5 Graphene
10(2)
1.5.1 Structure
10(1)
1.5.2 Electronics
11(1)
1.6 Nanodiamonds and Carbon Dots
12(1)
Acknowledgment
13(1)
References
13(2)
2 Using Polymers to Enhance the Carbon Nanomaterial Biointerface
15(28)
Goutam Pramanik
Jitka Neburkova
Vaclav Vanek
Mona Jani
Marek Kindermann
Petr Cigler
2.1 Introduction
15(1)
2.2 Colloidal Stability of CNMs
16(2)
2.3 Functionalization of CNMs with Polymers
18(1)
2.3.1 Noncovalent Approaches
18(1)
2.3.2 Covalent Approaches
18(1)
2.4 Influence of Polymers on the Spectral Properties of CNMs
19(3)
2.5 Functionalizing CNMs with Antifouling Polymers for Bioapplications
22(4)
2.6 Functionalization of CNMs with Stimuli-Responsive Polymers
26(3)
2.6.1 Carbon Nanoparticles with Thermoresponsive Polymers
27(1)
2.6.2 pH-Responsive Carbon Nanoparticles
27(1)
2.6.3 Redox-Responsive Carbon Nanoparticles
28(1)
2.6.4 Multi-Responsive Carbon Nanoparticles
28(1)
2.7 Functionalization of CNMs with Polymers for Delivery of Nucleic Acids
29(3)
2.8 Outlook
32(2)
Acknowledgments
34(1)
References
34(9)
3 Carbon Nanomaterials for Optical Bioimaging and Phototherapy
43(20)
Haifeng Dong
Yu Cao
3.1 Introduction
43(1)
3.2 Surface Functionalization of Carbon Nanomaterials
43(2)
3.3 Carbon Nanomaterials for Optical Imaging
45(6)
3.3.1 Intrinsic Fluorescence of Carbon Nanomaterials
45(1)
3.3.2 Imaging Utilizing Intrinsic Fluorescence Features of Carbon Nanomaterials
46(5)
3.3.3 Imaging with Fluorescently Labeled Carbon Nanomaterials
51(1)
3.4 Carbon Nanomaterials for Phototherapies of Cancer
51(5)
3.4.1 Photothermal Therapy
52(1)
3.4.2 Photodynamic Therapy
53(3)
3.5 Conclusions and Outlook
56(1)
References
56(7)
Part II: Bioimaging and Bioanalysis 63(202)
4 High-Resolution and High-Contrast Fluorescence Imaging with Carbon Nanomaterials for Preclinical and Clinical Applications
65(22)
John Czerski
Susanta K. Sarkar
4.1 Introduction
65(1)
4.2 Survey of Carbon Nanomaterials
66(3)
4.2.1 Fluorescent Nanodiamonds
66(1)
4.2.2 Carbon Nanotubes
66(3)
4.2.3 Graphene
69(1)
4.2.4 Carbon Nanodots
69(1)
4.3 Fluorescent Properties of FNDs and SWCNTs
69(2)
4.3.1 FNDs
69(2)
4.3.2 SWCNTs
71(1)
4.4 Survey of High-Resolution and High-Contrast Imaging
71(7)
4.4.1 General Considerations for Eventual Human Use
71(1)
4.4.2 General Considerations for Achieving High-Resolution and High-Contrast Imaging
72(1)
4.4.2.1 Photoacoustic Imaging (PAI)
72(1)
4.4.2.2 X-ray Computed Tomographic (CT) Imaging
73(1)
4.4.2.3 Magnetic Resonance Imaging (MRI)
73(1)
4.4.2.4 Image Alignment and Drift Correction
74(1)
4.4.3 Preclinical and Clinical Optical Imaging with CNMs
74(1)
4.4.4 Optical Imaging in the Short-Wavelength Window (approximately 650-950nm)
74(1)
4.4.4.1 Optical Imaging Beyond the Diffraction Limit
75(1)
4.4.4.2 Selective Modulation of Emission
75(1)
4.4.4.3 Time-Gated Fluorescence Lifetime Imaging
77(1)
4.4.5 Optical Imaging in the Long-Wavelength Window (approximately 950-1400nm)
77(1)
4.5 Conclusions
78(1)
References
79(8)
5 Carbon Nanomaterials for Deep-Tissue Imaging in the NIR Spectral Window
87(28)
Stefania Lettieri
Silvia Giordani
5.1 Introduction
87(2)
5.1.1 Transparent Optical Windows in Biological Tissue
87(1)
5.1.2 Near-Infrared Imaging Materials
88(1)
5.2 Carbon Nanomaterials for NIR Imaging
89(16)
5.2.1 Biocompatibility of CNMs
90(1)
5.2.2 Fluorescence of CNMs Probes
91(1)
5.2.3 Covalent and Noncovalent Functionalization
91(1)
5.2.4 CNMs as Bioimaging Platforms
91(1)
5.2.4.1 Fullerene
91(1)
5.2.4.2 Carbon Nanotubes
93(1)
5.2.4.3 Graphene Derivatives
99(1)
5.2.4.4 Carbon Dots
100(1)
5.2.4.5 Carbon Nano-onions
102(1)
5.2.4.6 Nanodiamonds
104(1)
5.3 Conclusions and Outlook
105(1)
Acknowledgments
106(1)
References
106(9)
6 Tracking Photoluminescent Carbon Nanomaterials in Biological Systems
115(24)
Simon Haziza
Laurent Cognet
Francois Treussart
Chapter Summary
115(1)
6.1 Introduction
115(1)
6.2 Tracking Cells in Organisms with Fluorescent Nanodiamonds
116(4)
6.3 Monitoring Inter and Intra Cellular Dynamics with Fluorescent Nanodiamonds
120(7)
6.4 Single-Walled Carbon Nanotubes: A Near-Infrared Optical Probe of the Nanoscale Extracellular Space in Live Brain Tissue
127(4)
6.5 Conclusion
131(1)
References
132(7)
7 Photoacoustic Imaging with Carbon Nanomaterials
139(28)
Seunghyun Lee
Donghyun Lee
Chulhong Kim
Chapter Summary
139(1)
7.1 Introduction
139(1)
7.2 Photoacoustic Imaging Systems
140(5)
7.2.1 Photoacoustic Microscopy
141(1)
7.2.2 Photoacoustic Computed Tomography
142(3)
7.3 Photoacoustic Application of Carbon Nanomaterials
145(16)
7.3.1 Carbon Nanomaterials for Photoacoustic Imaging Contrast Agents
146(3)
7.3.2 Carbon Nanomaterials for Multimodal Photoacoustic Imaging
149(7)
7.3.3 Carbon Nanomaterials for Photoacoustic Image-Guided Therapy
156(4)
7.3.4 Conclusions and Future Perspective
160(1)
Acknowledgments
161(1)
References
162(5)
8 Carbon Nanomaterial Sensors for Cancer and Disease Diagnosis
167(36)
Tran T. Tung
Kumud M. Tripathi
TaeYoung Kim
Melinda Krebsz
Tibor Pasinszki
Dusan Losic
8.1 Introduction
167(2)
8.2 Detection of VOC by Using Gas/Vapor Sensors for Cancer and Disease Diagnosis
169(10)
8.2.1 Carbon Nanodots (CNDs) and Graphene Quantum Dots (GQDs) for VOC Sensors
171(2)
8.2.2 Carbon Nanotubes (CNTs) for VOC Sensors
173(3)
8.2.3 Graphene for VOC Sensors
176(3)
8.3 Detection of Biomarkers Using Biosensors for Cancer and Disease Diagnosis
179(13)
8.3.1 Carbon Nanodot-and Graphene Quantum Dot-Based Biosensors for Disease Biomarkers Detection
179(3)
8.3.2 Carbon Nanotube-Based Biosensors for Cancer Biomarker Detection
182(4)
8.3.3 Carbon Nanotube-Based Biosensors for Disease Biomarker Detection
186(2)
8.3.4 Graphene-Based Biosensors for Cancer Biomarker Detection
188(2)
8.3.5 Graphene-Based Biosensors for Disease Biomarker Detection
190(2)
8.4 Conclusions and Perspectives
192(1)
Acknowledgments
193(1)
References
193(10)
9 Recent Advances in Carbon Dots for Bioanalysis and the Future Perspectives
203(62)
Jessica Fung Yee Fong
Yann Huey Ng
Sing Muk Ng
9.1 Introduction
203(2)
9.2 Fundamentals of CDs
205(11)
9.2.1 Synthesis Approaches
205(1)
9.2.2 Optical Properties
206(1)
9.2.2.1 Absorbance and Photoluminescence (PL)
206(1)
9.2.2.2 Quantum Yield (QY)
210(1)
9.2.2.3 Photoluminescence Origins
210(1)
9.2.2.4 Up-Conversion Photoluminescence (UCPL)
211(1)
9.2.2.5 Phosphorescence
212(1)
9.2.3 Physical and Chemical Properties
213(1)
9.2.4 Biosafety Assessments
214(2)
9.3 Bioengineering of CDs for Bioanalysis
216(5)
9.3.1 Functionalization Mechanism and Strategies
216(1)
9.3.1.1 Chemical Functionalization
216(1)
9.3.1.2 Doping
217(1)
9.3.1.3 Coupling with Gold Nanoparticles
217(1)
9.3.1.4 Fabrication onto Solid Polymeric Matrices
218(1)
9.3.2 Biomolecules Grafted on CDs as Sensing Receptors
218(1)
9.3.2.1 Deoxyribonucleic Acid (DNA)
218(1)
9.3.2.2 Aptamers
219(1)
9.3.2.3 Proteins/Peptides
219(1)
9.3.2.4 Biopolymers
220(1)
9.4 Bioanalysis Applications of CDs
221(19)
9.4.1 Biosensing Mechanism/Transduction Schemes
221(1)
9.4.1.1 Fluorescence
222(1)
9.4.1.2 Chemiluminescence (CL)
223(1)
9.4.1.3 Electrochemiluminescence (ECL)
224(1)
9.4.1.4 Electrochemical
224(1)
9.4.2 Uses of CDs in Bioanalysis
225(1)
9.4.2.1 Heavy Metals/Elements
225(1)
9.4.2.2 Reactive Oxygen/Nitrogen Species (ROS/RNS)
226(1)
9.4.2.3 Oligonucleotides
227(1)
9.4.2.4 Small Molecules/Pharmaceutical Drugs/Natural Compounds
228(1)
9.4.2.5 Proteins
230(1)
9.4.2.6 Enzyme Activities and Inhibitor Screening
231(1)
9.4.2.7 pH
232(1)
9.4.2.8 Temperature
234(1)
9.4.3 Solid-State Sensing for Point-of-Care Diagnostic Kits
234(2)
9.4.4 Bioimaging/Real-Time Monitoring
236(2)
9.4.5 Theranostics
238(2)
9.5 Future Perspectives
240(2)
9.5.1 Better Understanding of PL Mechanisms
240(1)
9.5.2 Establishment of Systematic Synthesis Protocol
241(1)
9.5.3 QY Improvement and Spectral Expansion to Longer Wavelength
241(1)
9.5.4 Sensitivity Improvement for Solid-State Sensing
242(1)
9.6 Conclusions
242(1)
References
242(23)
Part III: Therapy 265(76)
10 Functionalized Carbon Nanomaterials for Drug Delivery
267(22)
Naoki Komatsu
10.1 Introduction
267(1)
10.2 Direct Fabrication of Graphene-Based Composite with Photosensitizer for Cancer Phototherapy
268(6)
10.2.1 Fabrication of Graphene-Based Composite with Chlorin e6 (G-Ce6)
268(1)
10.2.2 Characterization of G-Ce6
268(4)
10.2.3 In vitro Evaluation of G-Ce6 for Cancer Phototherapy
272(2)
10.3 Polyglycerol-Functionalized Nanodiamond Conjugated with Platinum-Based Drug for Cancer Chemotherapy
274(6)
10.3.1 Synthesis of Polyglycerol-Functionalized Nanodiamond Conjugated with Platinum-Based Drug and Targeting Peptide
274(2)
10.3.2 Characterization of Polyglycerol-Functionalized Nanodiamond and the Derivatives
276(3)
10.3.3 In vitro Evaluation of Polyglycerol-Functionalized Nanodiamond Conjugated with Platinum-Based Drug for Cancer Chemotherapy
279(1)
10.4 Polyglycerol-Functionalized Nanodiamond Hybridized with DNA for Gene Therapy
280(3)
10.4.1 Synthesis and Characterization of Polyglycerol-Functionalized Nanodiamond Conjugated with Basic Polypeptides
280(1)
10.4.2 Characterization of Polyglycerol-Functionalized Nanodiamond Hybridized with Plasmid DNA
280(3)
10.5 Conclusions and Perspectives
283(2)
Acknowledgments
285(1)
References
285(4)
11 Multifunctional Graphene-Based Nanocomposites for Cancer Diagnosis and Therapy
289(20)
Ayuob Aghanejad
Parinaz Abdollahiyan
Jaleh Barar
Yadollah Omidi
11.1 Introduction
289(2)
11.2 Multifunctional Graphene-Based Composites for the Diagnosis/Therapy of Cancer
291(9)
11.2.1 Metal-Graphene Nanocomposites
292(1)
11.2.1.1 Gold-Graphene Composites
292(1)
11.2.1.2 Magnetic Graphene Nanocomposites
294(1)
11.2.2 Polymeric Graphene Nanocomposites
295(4)
11.2.3 Graphene Biomaterials for MR Imaging
299(1)
11.3 Multimodal Graphene-Based Composites for the Radiotherapy of Cancer
300(2)
11.4 Graphene-Based Nanobiomaterials for Cancer Diagnosis
302(1)
11.5 Conclusion
302(1)
Acknowledgment
303(1)
References
303(6)
12 Carbon Nanomaterials for Photothermal Therapies
309(32)
Jiantao Yu
Lingyan Yang
Junyan Yan
Wen-Cheng Wang
Yi-Chun Chen
Hung-Hsiang Chen
Chia-Hua Lin
12.1 Introduction
309(2)
12.2 GO for PTT
311(3)
12.2.1 PTT-Related Physical and Chemical Properties of GO
311(1)
12.2.2 GO for in vitro PTT
312(2)
12.2.3 GO for in vivo PTT
314(1)
12.3 CNTs and CNHs for PTT
314(4)
12.3.1 Physical and Chemical Properties of CNTs and CNHs Related to PTT
315(1)
12.3.2 CNTs and CNHs for in vitro PTT
316(1)
12.3.3 CNTs and CNHs for in vivo PTT
316(2)
12.4 CDs and GDs for PTT
318(2)
12.4.1 Physical and Chemical Properties of CDs and GDs Related to PTT
318(1)
12.4.2 CDs and GDs for in vitro PTT
319(1)
12.4.3 CDs and GDs for in vivo PTT
319(1)
12.5 Fullerenes for PTT
320(1)
12.5.1 Physical and Chemical Properties of Fullerenes Related to PTT
320(1)
12.5.2 Fullerenes for in vitro PTT
320(1)
12.5.3 Fullerenes for in vivo PTT
321(1)
12.6 Carbon Nanomaterial-Based Nanocomposites for PTT
321(3)
12.6.1 GO-Based Nanocomposites for PTT
322(1)
12.6.2 CNT-Based Nanocomposites for PTT
323(1)
12.6.3 CD-and GD-Based Nanocomposites for PTT
323(1)
12.7 Carbon Nanomaterial-Based Combined Therapy with PTT
324(5)
12.7.1 Chemotherapy
324(1)
12.7.2 RT
324(1)
12.7.3 Photodynamic Therapy (PDT)
325(1)
12.7.4 Gene Therapy
325(2)
12.7.5 Immune Therapy
327(1)
12.7.6 Theranostic Applications
328(1)
12.8 Conclusions and Perspectives
329(1)
References
330(11)
Index 341
Editors

Yuen Yung Hui, is a Postdoctoral Research Fellow at the Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.

Huan-Cheng Chang, is a Distinguished Research Fellow at the Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.

Haifeng Dong, is a Professor at the University of Science and Technology Beijing, P.R. China.

Xueji Zhang, is Professor and Dean in the School of Chemistry & Biological Engineering at the University of Science & Technology Beijing, P.R. China.