Muutke küpsiste eelistusi

E-raamat: Cardinal Numerals: Old English from a Cross-Linguistic Perspective

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 190,06 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
    • De Gruyter e-raamatud
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book embeds a description and an analysis of the Old English numeral system into a broader, cross-linguistic discussion. It provides a theoretical framework for the study of numerals and numeral systems of natural languages, bridging the gap between recent findings in the cognitive sciences on numeracy and the known typological generalisations on cardinal numerals.

The Old English numeral system shows a number of peculiarities not found in the present-day languages of Europe. Its detailed description is therefore an ideal locus for studying the features of linguistic number expressions in terms of their morpho-syntactic properties and of the structure of numeral systems.
The approach is innovative in that it combines a detailed analysis of the numeral system with the analysis of the grammatical properties of cardinal numerals. For the description of Old English, the study focuses on aspects of information structure and of referent identification in quantificational constructions. This leads to a novel perspective on the language-internal variation in the agreement patterns between numerals and quantified nouns, allowing the author to test and refine some long standing tenets in the study of numerals and to offer alternative explanations.

Rather than seeing numerals as a hybrid word class, the author argues that this variation in the morpho-syntactic behaviour follows identifiable patterns specific to the word class numeral. He accounts for these patterns by positing different, cross-linguistically uniform stages in the emergence of numeral systems, as well as varying degrees of discreteness of the quantified noun. Moreover, the author demonstrates that the constraints determining this variation in Old English have obvious parallels across languages.



The future of English linguistics as envisaged by the editors of Topics in English Linguistics lies in empirical studies which integrate work in English linguistics into general and theoretical linguistics on the one hand, and comparative linguistics on the other. The TiEL series features volumes that present interesting new data and analyses, and above all fresh approaches that contribute to the overall aim of the series, which is to further outstanding research in English linguistics.

Arvustused

"This monograph is a major contribution to the literature on numerals andnumerical cognition. Its value will be in its rekindling of debates long leftdormant, and its integration of Germanic historical linguistics, syntax,semantics, and cognitive linguistics within a fascinating study of thisneglected lexical domain."Stephen Chrisomalis in: Linguist List 21.5213

This monograph is a major contribution to the literature on numerals andnumerical cognition. Its value will be in its rekindling of debates long leftdormant, and its integration of Germanic historical linguistics, syntax,semantics, and cognitive linguistics within a fascinating study of thisneglected lexical domain.Stephen Chrisomalis in: Linguist List 21.5213

Acknowledgements v
Abbreviations xii
Introduction 1(11)
Linguistic numeral systems
12(60)
Cardinal numerals as quantifiers
12(4)
Cardinal numerals and numbers
16(9)
Preliminaries: cardinal numerals as properties of sets
16(2)
Numbers as ordered sequences
18(2)
Different types of number assignment
20(3)
Numbers are infinite, numerals are not
23(1)
Outlook
24(1)
The basic components of numeral systems
25(17)
Simple numerals
25(1)
Complex numerals
26(4)
Arithmetic operands
30(2)
Bases
32(1)
Defining a base
32(2)
Terminological problem I: bases vs. operands
34(2)
Terminological problem II: a mathematician's base
36(2)
Atoms
38(1)
Complex numerals: a case of syntax or morphology?
39(2)
Summary
41(1)
Systemic and non-systemic cardinality expressions
42(10)
General
42(4)
The counting sequence
46(1)
The counting sequence as an ordered sequence of well-distinguished expressions
46(2)
The counting sequence of Old English
48(1)
The limited recursive potential of non-systemic expressions
49(1)
Cardinal numerals as the morphological basis of non-cardinal numerals
50(2)
Idiosyncrasies and variant froms in numeral systems
52(10)
`Idiosyncratic' vs. `systemic'
52(2)
Idiosyncratic numerals
54(4)
Variant forms
58(1)
Allomorphic variants
59(1)
Functional variants
59(3)
Summary: Terminological and theoretical basis for the study of numerals
62(10)
Numerals
63(1)
Numerically specific vs. numerically unspecific
63(1)
Systemic vs. non-systemic number expressions
63(1)
Numbers
64(1)
Approaches to defining `number'
64(1)
Definition of `numeral'
65(1)
Types of number assignment
66(1)
Counting words and numerals
66(1)
The elements and properties of numeral systems
67(1)
The limit number L
67(1)
`Simple' vs. `complex', `atoms' vs. `bases'
67(1)
Arithmetic operands
68(2)
Idiosyncratic numerals
70(1)
Allomorphic and functional variants
70(2)
The numeral system of Old English
72(57)
Overview: the simple forms
73(2)
The atoms
75(7)
The numerical value `1'
75(1)
The numerical value `2'
76(4)
The numerical value `3'
80(1)
The atomic values from `4' to `9'
81(1)
The expressions for `11' and `12'
82(1)
The first base `10'
83(11)
The simple forms for `10'
83(1)
The teens
83(1)
The multiples of `10'
84(1)
The expressions up to `60'
84(3)
The expressions for `70', `80', and `90'
87(3)
The expressions for `100', `110', and `120'
90(4)
The second base `100'
94(11)
The expressions for `100'
94(2)
The distribution of the expressions for `100'
96(6)
The section from `100' to `129'
102(3)
The third base `1,000'
105(2)
The development of the Old English numeral system
107(10)
The pre-history
108(1)
The numeral system of proto-Indo-European
108(1)
The numeral system of proto-Germanic
109(3)
Changes during the Old English period
112(1)
The loss of the overrunning section
112(1)
The loss of the circumfix
113(2)
Later modifications of the numeral system
115(2)
Ordinals
117(12)
The expressions for `first'
119(3)
The expressions for `second'
122(2)
The ordinal forms of the simple numerals
124(1)
The ordinal formation of complex forms
125(4)
Complex numerals
129(49)
The formation of complex numerals
130(22)
I-deletion
130(6)
The use of the third base
136(3)
The coherence of complex numerals
139(1)
The position of the quantified NP in complex numerals
139(5)
Other splits in complex numerals
144(8)
The decimal numeral system
152(10)
Recursion and serialisation
152(2)
How to (not) determine a decimal numeral system
154(5)
Old English: a trace of duodecimal counting?
159(3)
Non-systemic expressions for numerical values
162(16)
Preliminaries
162(2)
Non-systemic strategies for expressing numerical values within the scope of the numeral system
164(1)
Subtraction
164(5)
Extension of the scope of the second base
169(2)
Other alternative expressions
171(1)
Strategies for exceeding the scope of the numeral system
172(6)
Numeral constructions in Old English
178(70)
Preliminaries
178(2)
Previous classifications of the syntactic properties of Old English numerals
180(9)
General overview
180(3)
Wulfing 1894
183(2)
Mitchell 1985
185(2)
Conclusion and outlook
187(2)
Attributive quantification
189(18)
The Attributive Construction
190(2)
The Elliptic Construction
192(1)
Elliptic quantification
192(3)
on twa `in two parts'
195(2)
Anaphoric use
197(5)
Nominalisation of numerals
202(3)
Conclusion
205(2)
The Predicative Construction
207(3)
The Partitive Construction
210(17)
General
210(5)
Constraints on the Partitive Construction
215(1)
Quantification of a subset
216(3)
Quantification by high valued numerals
219(3)
A uniform account of the Partitive Construction
222(5)
Measure Constructions
227(12)
The nucleus of a Measure Construction
227(2)
Measuring predicates
229(1)
Measuring arguments
230(2)
Measuring properties
232(4)
Specifying age
236(1)
Summary
237(2)
The quantification of mass nouns
239(5)
Conclusion
244(4)
The word class `cardinal numeral'
248(38)
Starting point
248(2)
Adjectives, nouns, and numerals
250(23)
The numeral - an adjective?
250(3)
The numeral - a noun?
253(6)
Corbett's generalisation
259(4)
Cardinality-dependent variation of atoms
263(2)
Cardinality-dependent variation of bases
265(1)
The emergence of numeral systems
265(3)
Rephrasing Corbett
268(4)
Another remark on I-deletion
272(1)
Cross-linguistic types of numeral constructions
273(8)
Count and Mass Quantification
274(5)
The Partitive Construction as an intermediate type
279(2)
Against the hybridity of cardinal numerals
281(5)
Concluding remarks
286(8)
References
294(26)
Primary sources
294(7)
Studies
301(19)
Subject index 320(7)
Author index 327
Ferdinand von Mengden, University of Hamburg, Germany.