Muutke küpsiste eelistusi

E-raamat: Cardinalities of Fuzzy Sets

  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Counting is one of the basic elementary mathematical activities. It comes with two complementary aspects: to determine the number of elements of a set - and to create an ordering between the objects of counting just by counting them over. For finite sets of objects these two aspects are realized by the same type of num­ bers: the natural numbers. That these complementary aspects of the counting pro­ cess may need different kinds of numbers becomes apparent if one extends the process of counting to infinite sets. As general tools to determine numbers of elements the cardinals have been created in set theory, and set theorists have in parallel created the ordinals to count over any set of objects. For both types of numbers it is not only counting they are used for, it is also the strongly related process of calculation - especially addition and, derived from it, multiplication and even exponentiation - which is based upon these numbers. For fuzzy sets the idea of counting, in both aspects, looses its naive foundation: because it is to a large extent founded upon of the idea that there is a clear distinc­ tion between those objects which have to be counted - and those ones which have to be neglected for the particular counting process.

Muu info

Springer Book Archives
1. Triangular Operations and Negations (Allegro).- 1.1. Triangular Norms
and Conorms.- 1.2. Negations.- 1.3. Associated Triangular Operations.- 1.4.
Archimedean Triangular Operations.- 1.5. Induced Negations and Complementary
Triangular Operations.- 1.6. Implications Induced by Triangular Norms.-
2.
Fuzzy Sets (Andante spianato).- 2.1. The Concept of a Fuzzy Set.- 2.2.
Operations on Fuzzy Sets.- 2.3. Generalized Operations.- 2.4. Other Elements
of the Language of Fuzzy Sets.- 2.5. Towards Cardinalities of Fuzzy Sets.-
3.
Scalar Cardinalities of Fuzzy Sets (Scherzo).- 3.1. An Axiomatic Viewpoint.-
3.2. Cardinality Patterns.- 3.3. Valuation Property and Subadditivity.- 3.4.
Cartesian Product Rule and Complementarity.- 3.5. On the Fulfilment of a
Group of the Properties.-
4. Generalized Cardinals with Triangular Norms
(Rondeau à la polonaise).- 4.1. Generalized FGCounts.- 4.2. Generalized
FLCounts.- 4.3. Generalized FECounts.- List of Symbols.