Muutke küpsiste eelistusi

E-raamat: Carnivorous Plants: Physiology, Ecology, and Evolution

Edited by (Senior Research Scientist, Institute of Botany of the Czech Academy of Sciences, Czech Republic), Edited by (Senior Research Fellow, Harvard University, Harvard Forest, Massachusetts, USA)
  • Formaat: 544 pages
  • Ilmumisaeg: 08-Dec-2017
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780191085390
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 69,38 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 544 pages
  • Ilmumisaeg: 08-Dec-2017
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780191085390
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Carnivorous plants have fascinated botanists, evolutionary biologists, ecologists, physiologists, developmental biologists, anatomists, horticulturalists, and the general public for centuries. Charles Darwin was the first scientist to demonstrate experimentally that some plants could actually attract, kill, digest, and absorb nutrients from insect prey; his book Insectivorous Plants (1875) remains a widely-cited classic. Since then, many movies and plays, short stories, novels, coffee-table picture books, and popular books on the cultivation of carnivorous plants have been produced. However, all of these widely read products depend on accurate scientific information, and most of them have repeated and recycled data from just three comprehensive, but now long out of date, scientific monographs. The field has evolved and changed dramatically in the nearly 30 years since the last of these books was published, and thousands of scientific papers on carnivorous plants have appeared in the academic journal literature. In response, Ellison and Adamec have assembled the world's leading experts to provide a truly modern synthesis. They examine every aspect of physiology, biochemistry, genomics, ecology, and evolution of these remarkable plants, culminating in a description of the serious threats they now face from over-collection, poaching, habitat loss, and climatic change which directly threaten their habitats and continued persistence in them.

Arvustused

As a review of the most up to date research on carnivorous plants, this is ideal for senior undergraduate or graduate students, academics, and those with a keen interest in carnivorous plants...It rewards the careful and thorough reader who is passionate about botany. * Emma Bocking, The Canadian Field-Naturalist * Carnivorous Plants is a remarkable work of scholarship for a remarkable group of plants (by a remarkable band of enthusiasts). * Botany One *

Preface xxiii
Editors and contributors xxv
Foreword xxxv
Daniel M. Joel
Part I Overview
1(42)
1 Introduction: what is a carnivorous plant?
3(4)
Aaron M. Ellison
Lubomir Adamec
1.1 The carnivorous syndrome
3(1)
1.2 Subsets of carnivorous plants
4(1)
1.3 Other plants that share some carnivorous characteristics
5(1)
1.4 The benefits and costs of carnivory
5(1)
1.5 The future: learning from carnivorous plants
5(2)
2 Biogeography and habitats of carnivorous plants
7(15)
J. Stephen Brewer
Jan Schlauer
2.1 Introduction
7(1)
2.2 Global biogeography
7(6)
2.3 Habitat specificity defines regional distributions
13(5)
2.3.1 Hypotheses concerning co-occurrence of carnivorous and noncarnivorous plants
13(1)
2.3.2 Regional patterns of co-occurrence
14(4)
2.4 Mechanisms of coexistence in wet, unshaded, nutrient-poor soils
18(2)
2.4.1 Niche complementarity
18(1)
2.4.2 Fire-mediated stochasticity
19(1)
2.5 Future research
20(2)
3 Evolution of carnivory in angiosperms
22(21)
Andreas Fleischmann
Jan Schlauer
Stephen A. Smith
Thomas J. Givnish
3.1 Introduction
22(6)
3.1.1 Evolution of carnivory
22(2)
3.1.2 Origins of carnivory
24(2)
3.1.3 Phylogeography and timing of origin
26(2)
3.2 Caryophyllales
28(4)
3.2.1 Drosophyllaceae
30(1)
3.2.2 Dioncophyllaceae
30(1)
3.2.3 Nepenthaceae
31(1)
3.2.4 Droseraceae
32(1)
3.3 Oxalidales
32(2)
3.3.1 Cephalotaceae
32(2)
3.4 Asteridae: Ericales
34(1)
3.4.1 Roridulaceae
34(1)
3.4.2 Sarraceniaceae
35(1)
3.5 Asteridae: Lamiales
35(3)
3.5.1 Byblidaceae
35(1)
3.5.2 Plantaginaceae
35(1)
3.5.3 Lentibulariaceae
35(3)
3.6 Poales
38(2)
3.6.1 Bromeliaceae
38(1)
3.6.2 Eriocaulaceae
39(1)
3.7 Loss of carnivory
40(1)
3.8 Future research
41(2)
Part II Systematics and Evolution of Carnivorous Plants
43(112)
4 Systematics and evolution of Droseraceae
45(13)
Andreas Fleischmann
Adam T. Cross
Robert Gibson
Paulo M. Gonella
Kingsley W. Dixon
4.1 Introduction
45(2)
4.2 Dionaea
47(1)
4.2.1 Morphology and systematics
47(1)
4.2.2 Carnivory
48(1)
4.2.3 Ecology
48(1)
4.3 Aldrovanda
48(2)
4.3.1 Morphology and systematics
48(1)
4.3.2 Distribution
49(1)
4.3.3 Carnivory
49(1)
4.3.4 Ecology and conservation
49(1)
4.4 Drosera
50(7)
4.4.1 Life history and morphology
50(2)
4.4.2 Phylogeny and taxonomy
52(1)
4.4.3 Distribution
53(1)
4.4.4 Carnivory
54(1)
4.4.5 Ecology and habitats
54(2)
4.4.6 Conservation
56(1)
4.5 Future research
57(1)
5 Systematics and evolution of Nepenthes
58(12)
Charles Clarke
Jan Schlauer
Jonathan Moran
Alastair Robinson
5.1 Introduction
58(1)
5.2 Taxonomy and systematics
58(7)
5.2.1 Determinants of change in Nepenthes taxonomy
61(1)
5.2.2 Toward an improved taxonomy of Nepenthes
62(2)
5.2.3 Best practices for describing new taxa in Nepenthes
64(1)
5.3 Evolution in Nepenthes
65(4)
5.3.1 Phylogeography
65(1)
5.3.2 Drivers of diversification
66(1)
5.3.3 Molecular evolution in Nepenthes
67(1)
5.3.4 Infrageneric classification
67(2)
5.4 Future research
69(1)
6 Systematics and evolution of Lentibulariaceae: I. Pinguicula
70(11)
Andreas Fleischmann
Aymeric Roccia
6.1 Introduction
70(1)
6.2 Life history and morphology
70(4)
6.2.1 Life-history strategies
70(1)
6.2.2 Leaves
71(1)
6.2.3 Inflorescences and flowers
72(2)
6.2.4 Chromosome numbers
74(1)
6.2.5 Clonal growth
74(1)
6.3 Phytogeny and taxonomy
74(2)
6.3.1 Phylogeography
74(1)
6.3.2 Infrageneric classification
75(1)
6.4 Distribution
76(2)
6.4.1 Global patterns of diversity
76(1)
6.4.2 Mexico: the center of diversity
77(1)
6.4.3 Diversity of other regions
78(1)
6.5 Carnivory and other plant-insect interactions
78(1)
6.5.1 Prey
78(1)
6.5.2 Associated arthropods
78(1)
6.6 Conservation
79(1)
6.7 Future research
80(1)
7 Systematics and evolution of Lentibulariaceae: II. Genlisea
81(8)
Andreas Fleischmann
7.1 Life history and morphology
81(3)
7.1.1 Leaves
81(1)
7.1.2 Inflorescences and flowers
82(1)
7.1.3 Fruits and seeds
83(1)
7.2 Carnivory
84(1)
7.3 Phylogeny and evolution
84(2)
7.3.1 Infrageneric classification
84(1)
7.3.2 Phylogeography
84(2)
7.3.3 Chromosome numbers
86(1)
7.3.4 Genome size
86(1)
7.4 Distribution
86(2)
7.4.1 Global patterns of diversity
86(1)
7.4.2 Brazil: the center of diversity
87(1)
7.4.3 African species
87(1)
7.5 Future research
88(1)
8 Systematics and evolution of Lentibulariaceae: III. Utricularia
89(16)
Richard W. Jobson
Paulo C. Baleeiro
Castor Guisande
8.1 Introduction
89(1)
8.2 Phylogeny and taxonomy
89(3)
8.2.1 Early classification and delimitation
89(1)
8.2.2 Contemporary phylogenies
89(3)
8.3 Evolution of life histories and morphology
92(7)
8.3.1 Habitats and life history
92(1)
8.3.2 Stolons, rhizoids, and leaves
92(2)
8.3.3 Bladder-trap morphology
94(2)
8.3.4 Bladder-trap evolution
96(1)
8.3.5 Inflorescences, flowers, and pollen
96(2)
8.3.6 Cytology
98(1)
8.3.7 Fruits and seeds: structure and dispersal
98(1)
8.4 Population dynamics
99(1)
8.4.1 Population genetics
99(1)
8.4.2 Pollination
99(1)
8.4.3 Clonal growth
100(1)
8.5 Contemporary biogeography and phylogeography
100(4)
8.5.1 Global patterns of diversity
100(1)
8.5.2 Phylogeography
101(1)
8.5.3 Diversification and molecular rate acceleration
101(2)
8.5.4 Diversification time and biogeographic shift in subgenus Polypompholyx
103(1)
8.6 Conservation issues
104(1)
8.7 Future research
104(1)
9 Systematics and evolution of Sarraceniaceae
105(15)
Robert F.C. Naczi
9.1 Introduction
105(1)
9.2 Taxonomy
105(5)
9.2.1 Darlingtonia
105(1)
9.2.2 Heliamphora
105(2)
9.2.3 Sarracenia
107(3)
9.3 Phylogenetic relationships
110(5)
9.3.1 Fossils
110(1)
9.3.2 Morphological evidence for relationships of Sarraceniaceae
110(1)
9.3.3 Molecular evidence for relationships of Sarraceniaceae
111(1)
9.3.4 Molecular divergence time estimation
112(1)
9.3.5 Interpreting morphology in light of molecular phylogeny
113(2)
9.4 Evolutionary patterns and processes
115(3)
9.4.1 Patterns
115(1)
9.4.2 Chromosome number variation
115(1)
9.4.3 Genetic diversity
115(1)
9.4.4 Hybridization
116(1)
9.4.5 Heterochrony
117(1)
9.4.6 Evolution of the Sarraceniaceae pitcher
118(1)
9.4.7 Historical biogeography
118(1)
9.5 Future research
118(2)
10 Systematics and evolution of small genera of carnivorous plants
120(15)
Adam T. Cross
Maria Paniw
Andre Vito Scatigna
Nick Kalfas
Bruce Anderson
Thomas J. Givnish
Andreas Fleischmann
10.1 Introduction
120(1)
10.2 Brocchinia
120(4)
10.2.1 Life history, morphology, and systematics
120(1)
10.2.2 Carnivory
121(2)
10.2.3 Distribution, habitat, and conservation
123(1)
10.3 Catopsis
124(1)
10.3.1 Morphology and systematics
124(1)
10.3.2 Carnivory
124(1)
10.3.3 Distribution, habitat, and conservation
124(1)
10.4 Paepalanthus
124(1)
10.5 Drosophyllum
125(1)
10.5.1 Life history, morphology, and systematics
125(1)
10.5.2 Carnivory
125(1)
10.5.3 Distribution, habitat, and conservation
126(1)
10.6 Triphyophyllum
126(2)
10.6.1 Life history, morphology, and systematics
126(1)
10.6.2 Carnivory
127(1)
10.6.3 Distribution, habitat, and conservation
128(1)
10.7 Cephalotus
128(2)
10.7.1 Morphology and systematics
128(1)
10.7.2 Carnivory
129(1)
10.7.3 Distribution, habitat, and conservation
129(1)
10.8 Roridula
130(1)
10.8.1 Morphology and systematics
130(1)
10.8.2 Carnivory
130(1)
10.8.3 Distribution and habitat
131(1)
10.9 Byblis
131(2)
10.9.1 Life history, morphology, and systematics
131(1)
10.9.2 Carnivory
132(1)
10.9.3 Distribution, habitat, and conservation
132(1)
10.10 Philcoxia
133(1)
10.10.1 Morphology and systematics
133(1)
10.10.2 Carnivory
133(1)
10.10.3 Distribution, habitat, and conservation
133(1)
10.11 Future research
134(1)
11 Carnivorous plant genomes
135(20)
Tanya Renner
Tianying Lan
Kimberly M. Farr
Enrique Ibarra-Laclette
Luis Herrera-Estrella
Stephan C. Schuster
Mitsuyasu Hasebe
Kenji Fukushima
Victor A. Albert
11.1 Introduction: flowering plant genomes with a twist
135(2)
11.1.1 Nuclear genome sequencing and assembly efforts for carnivorous plants
136(1)
11.2 Genome evolution
137(2)
11.2.1 Utricularia gibba has a dynamic genome
137(2)
11.2.2 Selection for genome size reduction in the Lentibulariaceae
139(1)
11.2.3 Adaptive evolution through gene duplication is largely limited to small-scale events in Cephalotus follicularis
139(1)
11.3 Contribution of whole genome duplications to functional diversity
139(1)
11.4 The adaptive roles of small-scale gene duplication events
140(4)
11.4.1 Utricularia gibba small-scale gene duplication events
140(1)
11.4.2 Small-scale gene duplication events in Cephalotus follicularis
141(3)
11.5 Evolutionary rates and gene loss in Utricularia gibba
144(3)
11.5.1 ROS scavenging and DNA repair
144(1)
11.5.2 Production of diploid gametes and the evolution of Utricularia gibba polyploidy
145(1)
11.5.3 Defense response
145(1)
11.5.4 Essential nutrient transport and enzyme activity
146(1)
11.5.5 Auxin response
146(1)
11.5.6 Root and shoot morphogenesis and the transition to the aquatic habit
146(1)
11.6 Genomic insights into leaf patterning in Cephalotus follicularis
147(1)
11.7 Evolutionary convergence of digestive enzymes
148(1)
11.8 The Utricularia gibba genome provides a look at complete plant centromeres
149(2)
11.9 Additional nuclear genomes and transcriptomes of carnivorous plants
151(1)
11.10 Organellar genomes
152(1)
11.11 Future research
152(3)
Part III Physiology, Form, and Function
155(128)
12 Attraction of prey
157(10)
John D. Horner
Bartosz J. Plachno
Ulrike Bauer
Bruno Di Giusto
12.1 Introduction
157(1)
12.2 Visual cues
157(2)
12.2.1 Reflectance and absorption patterns
157(1)
12.2.2 Red color as an attractant
158(1)
12.3 Nectar rewards
159(1)
12.4 Olfactory cues
160(3)
12.5 Acoustic attraction
163(1)
12.6 Prey attraction in carnivorous plants with aquatic traps
163(1)
12.7 Synergistic effects of multiple attractants
163(1)
12.8 Temporal variation of attractive cues
163(1)
12.9 Is production of attractants a crucial trait for carnivory?
164(1)
12.10 Cost of attractants
164(1)
12.11 Future research
165(2)
13 Functional anatomy of carnivorous traps
167(13)
Bartosz J. Plachno
Lyudmila E. Muravnik
13.1 Introduction
167(1)
13.2 Nectar glands
167(2)
13.2.1 Nectaries of the Sarraceniaceae
167(1)
13.2.2 Nectaries of Cephalotus
168(1)
13.2.3 Nectaries of Nepenthes
168(1)
13.3 Slippery surfaces of pitcher-plant traps and bromeliad tanks
169(1)
13.3.1 Epicuticular wax crystals
170(1)
13.3.2 Teeth, folds, and ridges
170(1)
13.3.3 Directional features
170(1)
13.4 Sticky glands of adhesive traps
170(2)
13.4.1 Mucilage glands of carnivorous Lamiales
171(1)
13.4.2 Mucilage glands of adhesively trapping Caryophyllales
171(1)
13.4.3 Resin emergences of carnivorous Ericales
172(1)
13.4.4 Glands of other plants that entrap insects
172(1)
13.5 Suction traps and eel traps of the Lentibulariaceae
172(4)
13.5.1 The bladders of Utricularia
172(2)
13.5.2 The eel trap of Genlisea
174(2)
13.6 Fecal traps
176(1)
13.7 Causes of prey death
177(1)
13.8 Digestive and absorptive glands
177(2)
13.8.1 The terminal element and enzyme localization in digestive glands
177(1)
13.8.2 Nutrient uptake and transport in the middle and basal elements
178(1)
13.9 Future research
179(1)
14 Motile traps
180(14)
Simon Poppinga
Ulrike Bauer
Thomas Speck
Alexander G. Volkov
14.1 Introduction
180(1)
14.2 Active motile traps
180(11)
14.2.1 Snap-traps
180(5)
14.2.2 Motile adhesive traps
185(3)
14.2.3 Suction traps
188(3)
14.3 The passive motile trap of Nepenthes gracilis
191(1)
14.4 Future research
192(2)
15 Non-motile traps
194(13)
Ulrike Bauer
Reinhard Jetter
Simon Poppinga
15.1 Introduction
194(1)
15.2 Sticky traps and trap glues
195(2)
15.3 Anti-adhesive surfaces
197(6)
15.3.1 Wax blooms
197(2)
15.3.2 Cuticular folds
199(1)
15.3.3 Directional (anisotropic) surfaces
200(1)
15.3.4 Wettable (superhydrophilic) surfaces
201(2)
15.4 Mechanical obstructions
203(1)
15.5 Ecological implications of wetness-activated trapping mechanisms
203(2)
15.6 Future research
205(2)
16 Biochemistry of prey digestion and nutrient absorption
207(14)
Ildiko Matusikova
Andrej Pavlovic
Tanya Renner
16.1 Introduction
207(1)
16.2 Composition of the digestive fluid
207(6)
16.2.1 Proteases
208(3)
16.2.2 Phosphatases
211(1)
16.2.3 Chitinases
211(1)
16.2.4 Nucleases
212(1)
16.2.5 Carbohydrate-digesting enzymes
213(1)
16.3 Regulation of enzyme release and activity in traps
213(3)
16.3.1 Enzyme induction
213(1)
16.3.2 Combinations of constitutive and inducible production of enzymes
214(2)
16.3.3 Enzyme activity
216(1)
16.4 Evolution of digestive enzymes and their regulatory mechanisms
216(3)
16.4.1 Subfunctionalization of class I chitinases for defense and digestion
217(1)
16.4.2 Evolution and expression of class III chitinases
218(1)
16.4.3 Evolution and expression of class V β-1,3-glucanases
219(1)
16.4.4 Evolution and specificity of proteases
219(1)
16.5 Future research
219(2)
17 Mineral nutrition of terrestrial carnivorous plants
221(11)
Lubomir Adamec
Andrej Pavlovic
17.1 Introduction
221(1)
17.2 Ecophysiological traits in stressful habitats
221(1)
17.3 Nutrient content and stoichiometry
222(1)
17.4 Mineral nutrient economy
223(3)
17.4.1 Mineral nutrient uptake from prey
223(1)
17.4.2 Mechanism of nutrient uptake from prey
224(1)
17.4.3 Mineral nutrient reutilization
224(1)
17.4.4 Leaf-root nutrient interaction
224(1)
17.4.5 Seasonal nutrient gain
225(1)
17.5 Growth effects
226(1)
17.6 Effects of mineral nutrition on expression of carnivorous traits
227(1)
17.7 Mineral nutrition of Nepenthes
228(2)
17.8 Nutritional cost/benefit relationships of carnivory
230(1)
17.9 Future research
230(2)
18 Why are plants carnivorous? Cost/benefit analysis, whole-plant growth, and the context-specific advantages of botanical carnivory
232(24)
Thomas J. Givnish
K. William Sparks
Steven J. Hunter
Andrej Pavlovic
18.1 Introduction
232(1)
18.2 The cost/benefit model for the evolution of plant carnivory
233(3)
18.2.1 The benefits of carnivory
234(1)
18.2.2 Benefits vary with environmental conditions
234(2)
18.3 Predictions of the cost/benefit model
236(6)
18.3.1 Carnivory is most likely to evolve and be favored ecologically in habitats that are sunny, moist, and nutrient poor
236(1)
18.3.2 Epiphytism works against carnivory and favors myrmecotrophy
236(1)
18.3.3 Optimal investment in carnivory in terrestrial plants should increase toward the sunniest, moistest, most nutrient-poor sites
236(1)
18.3.4 Optimal trap mechanism and form should depend on tradeoffs associated with environmental conditions, prey type, and trap type
237(1)
18.3.5 Carnivorous plants should have low photosynthetic rates and RGRs
237(1)
18.3.6 Rainy, humid conditions or wet soils favor carnivores by lowering the costs of glandular secretion or permitting passive accumulation of rainwater
237(1)
18.3.7 Possession of defensive glandular hairs should facilitate the evolution of carnivory
237(1)
18.3.8 Fire over infertile substrates favors carnivory
237(1)
18.3.9 The ability of carnivorous plants to grow on bare rock or sterile sands must have evolved in stepwise fashion
238(1)
18.3.10 Anoxic or toxic soils should favor carnivory on open, moist sites
238(2)
18.3.11 Growth co-limitation by multiple nutrients may favor the paradoxical increase in root investment seen in carnivorous plants that have recently captured prey
240(1)
18.3.12 Paradoxically, in aquatic carnivorous Utricularia, harder, more fertile waters should favor greater investment in traps
241(1)
18.3.13 Soil anoxia or extreme infertility militate against tall, woody plants and may restrict carnivory to short, mostly herbaceous plants
241(1)
18.4 Assumptions of the cost/benefit model
242(4)
18.4.1 Costs of carnivory
242(1)
18.4.2 Allocation to carnivorous structures
242(2)
18.4.3 Prey capture increases with allocation to carnivory
244(1)
18.4.4 Benefits of carnivory
245(1)
18.4.5 Plateauing benefits of carnivory
245(1)
18.4.6 Growth advantage of carnivorous plants
245(1)
18.5 Tests of predictions of the cost/benefit model
246(8)
18.5.1 Botanical carnivory is most likely in nutrient-poor, sunny, and moist habitats
246(1)
18.5.2 Carnivorous epiphytes should be rare but myrmecophytic epiphytes should be more common
247(1)
18.5.3 Investment in carnivory by terrestrial plants should increase toward the sunniest, moistest, most nutrient-poor sites
248(2)
18.5.4 Form and function of traps depends on tradeoffs associated with environmental conditions and prey type
250(1)
18.5.5 Carnivorous plants should have low photosynthetic rates and RGR
251(1)
18.5.6 Rainy, humid conditions or wet soils favor carnivorous plants by lowering the costs of glandular secretion or allowing passive accumulation of rainwater
252(1)
18.5.7 Possession of defensive glandular hairs facilitates the evolution of carnivory
252(1)
18.5.8 Fire over infertile soils favors carnivorous plants
253(1)
18.5.9 Gradual evolution of carnivory is essential in extreme habitats
253(1)
18.5.10 Anoxic or toxic soils should favor carnivory on open, moist sites
253(1)
18.5.11 Co-limitation of growth by multiple nutrients may favor the paradoxical increase in root investment by carnivorous plants that recently have captured prey
253(1)
18.5.12 Harder, more fertile waters should favor greater investment in traps by Utricularia
254(1)
18.5.13 Soil anoxia or extreme infertility makes tall, woody carnivores impossible
254(1)
18.6 Future research
254(2)
19 Ecophysiology of aquatic carnivorous plants
256(14)
Lubomir Adamec
19.1 Introduction
256(1)
19.2 Habitat characteristics
256(1)
19.3 Morphology
257(1)
19.4 Growth, mineral nutrition, photosynthesis, and respiration
258(4)
19.4.1 Growth
258(1)
19.4.2 Mineral nutrition
259(2)
19.4.3 Photosynthesis and respiration
261(1)
19.5 Trap ecophysiology of aquatic Utricularia
262(5)
19.5.1 Water flow
262(2)
19.5.2 Prey digestion
264(1)
19.5.3 The role of trap commensals
265(1)
19.5.4 Oxygen regime and trap respiration
266(1)
19.6 Regulation of investment in carnivory
267(1)
19.7 Turions
268(1)
19.8 Future research
269(1)
20 Biotechnology with carnivorous plants
270(13)
Laurent Legendre
Douglas W. Darnowski
20.1 Introduction
270(1)
20.2 Activity and production of pharmaceutical substances
270(7)
20.2.1 Droseraceae and Nepenthaceae
270(6)
20.2.2 Sarraceniaceae
276(1)
20.2.3 Lentibulariaceae
276(1)
20.3 Mass propagation
277(2)
20.3.1 In vitro culture
277(2)
20.3.2 Hydroponics
279(1)
20.4 Industrial products inspired by botanical carnivory
279(2)
20.4.1 Production tools for recombinant proteins
279(1)
20.4.2 Biomimetic materials
280(1)
20.5 Future research
281(2)
Part IV Ecology
283(90)
21 Prey selection and specialization by carnivorous plants
285(9)
Douglas Darnowski
Ulrike Bauer
Marcos Mendez
John Horner
Bartosz J. Plachno
21.1 Introduction
285(1)
21.2 Prey selection by carnivorous plants with motile traps
285(4)
21.2.1 Aldrovanda
285(1)
21.2.2 Dionaea
286(1)
21.2.3 Utricularia
286(2)
21.2.4 Drosera
288(1)
21.3 Prey selection by carnivorous plants with non-motile traps
289(4)
21.3.1 Genlisea
289(1)
21.3.2 Philcoxia
290(1)
21.3.3 Drosophyllum
290(1)
21.3.4 Pinguicula
290(1)
21.3.5 Nepenthes
291(1)
21.3.6 Sarracenia
292(1)
21.3.7 Brocchinia, Catopsis, Cephalotus, and Heliamphora
293(1)
21.4 Future research
293(1)
22 Reproductive biology and pollinator-prey conflicts
294(20)
Adam T. Cross
Arthur R. Davis
Andreas Fleischmann
John D. Horner
Andreas Jurgens
David J. Merritt
Gillian L. Murza
Shane R. Turner
22.1 Introduction
294(1)
22.2 Pollinator-prey conflict
295(3)
22.2.1 Autogamy
295(1)
22.2.2 Specialization on pollinators and prey
296(1)
22.2.3 Carnivorous traps that mimic flowers
297(1)
22.2.4 Spatial separation of flowers and traps
297(1)
22.2.5 Temporal separation of flowering and trapping
298(1)
22.3 Pollinator-prey conflict as a function of trap type
298(4)
22.3.1 Sticky traps
298(2)
22.3.2 Pitfall traps
300(1)
22.3.3 The suction traps of Utricularia
301(1)
22.3.4 Snap-traps
302(1)
22.3.5 Eel traps
302(1)
22.4 Seed morphology, germination biology, and seed dormancy
302(9)
22.4.1 Bromeliaceae
306(1)
22.4.2 Eriocaulaceae
307(1)
22.4.3 Droseraceae
307(1)
22.4.4 Drosophyllaceae
308(1)
22.4.5 Nepenthaceae
308(1)
22.4.6 Dioncophyllaceae
309(1)
22.4.7 Cephalotaceae
309(1)
22.4.8 Roridulaceae
309(1)
22.4.9 Sarraceniaceae
309(1)
22.4.10 Byblidaceae
310(1)
22.4.11 Plantaginaceae
310(1)
22.4.12 Lentibulariaceae
311(1)
22.5 Conservation seed banking
311(1)
22.6 Future research
312(2)
23 Commensals of Nepenthes pitchers
314(19)
Leonora S. Bittleston
23.1 Introduction
314(1)
23.2 History of Nepenthes inquiline studies
314(10)
23.3 Physical properties of Nepenthes pitchers
324(1)
23.4 Nepenthes inquilines and their functional roles
324(3)
23.4.1 Arthropods, vermiform organisms, and rotifers
324(1)
23.4.2 Fungi, protozoa, algae, and bacteria
325(2)
23.4.3 Other inquilines
327(1)
23.4.4 Inquiline effects on hosts
327(1)
23.5 Geographic patterns
327(5)
23.5.1 Patterns within and among pitchers
327(3)
23.5.2 Comparisons with surrounding habitats
330(1)
23.5.3 Inquilines of Nepenthes and Sarracenia
330(2)
23.6 Future research
332(1)
24 Pitcher-plant communities as model systems for addressing fundamental questions in ecology and evolution
333(16)
Thomas E. Miller
William E. Bradshaw
Christina M. Holzapfel
24.1 Introduction
333(1)
24.2 Natural history of Sarracenia and its inquilines
333(4)
24.2.1 Prey capture
334(1)
24.2.2 Microbes
334(1)
24.2.3 Bacterivores
334(1)
24.2.4 Wyeomyia smithii
334(2)
24.2.5 Other dipterans
336(1)
24.2.6 Inquiline dispersal
336(1)
24.2.7 Non-aquatic associates: moths
336(1)
24.2.8 Pollinators
336(1)
24.2.9 Spiders
337(1)
24.3 Sarracenia purpurea and its associates as a model ecological system
337(5)
24.3.1 Mutualism between Sarracenia purpurea and its aquatic inquilines
337(1)
24.3.2 Consumer versus resource control of communities
338(1)
24.3.3 Testing theories of succession
338(1)
24.3.4 Dispersal and metacommunities
339(1)
24.3.5 Biogeography at the scale of a community
340(1)
24.3.6 Evolution in a community context
341(1)
24.4 Wyeomyia as a model system for inquiline species
342(5)
24.4.1 Density-dependent selection
342(1)
24.4.2 Evolution of protandry
342(1)
24.4.3 The evolution of diapause and photoperiodism in Wyeomyia smithii
343(2)
24.4.4 Climatic change as a selective force driving evolution
345(1)
24.4.5 Genetic architecture of adaptive evolution
346(1)
24.5 Future research
347(2)
25 The Utricularia-associated microbiome: composition, function, and ecology
349(10)
Dagmara Sirova
Jiri Barta
Jakub Borovec
Jaroslav Vrba
25.1 Introduction
349(1)
25.2 The environment of the trap lumen
350(1)
25.3 Prokaryotes
351(2)
25.4 Eukaryotes
353(2)
25.4.1 Algae
353(1)
25.4.2 Fungi
354(1)
25.4.3 Protozoa
354(1)
25.4.4 Are metazoa capable of long-term survival in Utricularia traps?
355(1)
25.5 Periphyton
355(1)
25.6 Effects of microbial activity on Utricularia growth
356(1)
25.7 Future research
357(2)
26 Nutritional mutualisms of Nepenthes and Roridula
359(14)
Jonathan A. Moran
Bruce Anderson
Lijin Chin
Melinda Greenwood
Charles Clarke
26.1 Introduction
359(1)
26.2 Nepenthes and Formicidae
359(3)
26.2.1 Nepenthes rafflesiana
359(2)
26.2.2 Nepenthes bicalcarata
361(1)
26.3 Nepenthes and vertebrates
362(5)
26.3.1 Types of interactions with vertebrates
362(1)
26.3.2 Highland Nepenthes and terrestrial mammals
363(3)
26.3.3 Nepenthes hemsleyana and bats
366(1)
26.3.4 The future
367(1)
26.4 Other potential mutualists with Nepenthes
367(2)
26.4.1 Nepenthes albomarginata
367(1)
26.4.2 Nepenthes ampullaria
368(1)
26.5 Roridula and Hemiptera
369(2)
26.5.1 Digestive mutualism
369(1)
26.5.2 Other symbionts
370(1)
26.6 Future research
371(2)
Part V The Future of Carnivorous Plants
373(38)
27 Conservation of carnivorous plants
375(14)
Charles Clarke
Adam Cross
Barry Rice
27.1 Introduction
375(1)
27.2 The conservation status of carnivorous plants
376(1)
27.3 Key threats
377(1)
27.4 Carnivorous plant conservation in North America
378(3)
27.4.1 Threats
378(1)
27.4.2 Species at risk
379(1)
27.4.3 Expert assessments
379(1)
27.4.4 Conservation and management of threatened species
380(1)
27.4.5 The role of horticulture
380(1)
27.5 Conservation of Nepenthes in Southeast Asia
381(3)
27.5.1 Poaching
381(1)
27.5.2 Habitat fragmentation
381(1)
27.5.3 Narrow endemics
382(1)
27.5.4 Taxonomic fragmentation
383(1)
27.6 Conservation of Australian carnivorous plants
384(3)
27.6.1 The Southwest Australian floristic region
385(1)
27.6.2 Diversity
385(1)
27.6.3 Threats
385(2)
27.6.4 Conservation and management
387(1)
27.7 Future research and conservation prospects
387(2)
28 Estimating the exposure of carnivorous plants to rapid climatic change
389(19)
Matthew C. Fitzpatrick
Aaron M. Ellison
28.1 Introduction
389(1)
28.2 The basics of species distribution models
389(2)
28.2.1 Challenging species distribution models with sparse or rare species
390(1)
28.2.2 Critiques of species distribution models
390(1)
28.3 Characteristics of carnivorous plants that challenge SDMs
391(1)
28.3.1 Rarity and sparse distributions
391(1)
28.3.2 Habitat specialization
391(1)
28.3.3 Are carnivorous plant distributions constrained by climate?
392(1)
28.4 Species distribution models for carnivorous plants and other rare species
392(2)
28.4.1 Ensembles of small models
393(1)
28.4.2 Controlling complexity and over-fitting
393(1)
28.4.3 Estimating bioclimatic velocity
393(1)
28.5 Modeling exposure of carnivorous plants to climatic change
394(2)
28.5.1 Species occurrence data
394(1)
28.5.2 Climate data
394(1)
28.5.3 Species distribution modeling
395(1)
28.5.4 Ensembles of small models (ESM)
395(1)
28.5.5 Model projections, bioclimatic velocity, and exposure metrics
395(1)
28.6 Results
396(6)
28.6.1 Occurrence data for carnivorous plants
396(1)
28.6.2 Performance of species distribution models for carnivorous plants
396(1)
28.6.3 Vulnerability of carnivorous plants to climatic change
396(6)
28.7 Discussion
402(5)
28.8 Future research
407(1)
29 The future of research with carnivorous plants
408(3)
Aaron M. Ellison
Lubomir Adamec
29.1 Phylogeny evolution, and convergence
408(1)
29.2 Field observations and experiments
409(1)
29.3 Plant--animal and plant--microbe interactions
409(1)
29.4 Comparisons with noncarnivorous plants
409(2)
Appendix 411(24)
References 435(58)
Acknowledgments 493(4)
Taxonomic Index 497(10)
Subject index 507
Aaron M. Ellison is the Senior Research Fellow in Ecology at Harvard University, and a semi-professional photographer and writer. He studies the disintegration and reassembly of ecosystems following natural and anthropogenic disturbances; thinks about the relationship between the Dao and the intermediate disturbance hypothesis and reflects on the critical and reactionary stance of Ecology relative to Modernism.



Lubomír Adamec is the Senior Research Scientist in the Section of Plant Ecology of the Institute of Botany CAS at Trebon, Czech Republic, where he has been working since 1986. Since graduating in plant physiology from the Charles University in Prague, Czechoslovakia, he has been studying the ecophysiology of aquatic and wetland plants, especially carnivorous ones: mineral nutrition, photosynthesis, growth traits, Utricularia trap ecophysiology, and biophysics. He is the curator of the world's largest collection of aquatic carnivorous plants, currently including more than 80 species or populations, which is used extensively for research and plant conservation.