Muutke küpsiste eelistusi

E-raamat: Carrier Transport in Nanoscale MOS Transistors

  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 13-Jun-2017
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118871720
  • Formaat - PDF+DRM
  • Hind: 135,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 13-Jun-2017
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118871720

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A comprehensive advanced level examination of the transport theory of nanoscale devices

• Provides advanced level material of electron transport in nanoscale devices from basic principles of quantum mechanics through to advanced theory and various numerical techniques for electron transport
• Combines several up-to-date theoretical and numerical approaches in a unified manner, such as Wigner-Boltzmann equation, the recent progress of carrier transport research for nanoscale MOS transistors, and quantum correction approximations
• The authors approach the subject in a logical and systematic way, reflecting their extensive teaching and research backgrounds
Preface ix
Acknowledgements xi
1 Emerging Technologies
1(11)
1.1 Moore's Law and the Power Crisis
1(1)
1.2 Novel Device Architectures
2(3)
1.3 High Mobility Channel Materials
5(2)
1.4 Two-Dimensional (2-D) Materials
7(1)
1.5 Atomistic Modeling
8(4)
References
9(3)
2 First-principles Calculations for Si Nanostructures
12(29)
2.1 Band Structure Calculations
12(19)
2.1.1 Si Ultrathin-body Structures
12(5)
2.1.2 Si Nanowires
17(3)
2.1.3 Strain Effects on Band Structures: From Bulk to Nanowire
20(11)
2.2 Tunneling Current Calculations Through Si/SiO2/Si Structures
31(10)
2.2.1 Atomic Models of Si (001)/SiO2/Si (001) Structures
32(1)
2.2.2 Current-voltage Characteristics
33(2)
2.2.3 SiO2 Thickness Dependences
35(3)
References
38(3)
3 Quasi-ballistic Transport in Si Nanoscale MOSFETs
41(44)
3.1 A Picture of Quasi-ballistic Transport Simulated using Quantum-corrected Monte Carlo Simulation
41(14)
3.1.1 Device Structure and Simulation Method
42(2)
3.1.2 Scattering Rates for 3-D Electron Gas
44(2)
3.1.3 Ballistic Transport Limit
46(4)
3.1.4 Quasi-ballistic Transport
50(1)
3.1.5 Role of Elastic and Inelastic Phonon Scattering
51(4)
3.2 Multi-sub-band Monte Carlo Simulation Considering Quantum Confinement in Inversion Layers
55(9)
3.2.1 Scattering Rates for 2-D Electron Gas
56(2)
3.2.2 Increase in Dac for SOI MOSFETs
58(1)
3.2.3 Simulated Electron Mobilities in Bulk Si and SOI MOSFETs
59(2)
3.2.4 Electrical Characteristics of Si DG-MOSFETs
61(3)
3.3 Extraction of Quasi-ballistic Transport Parameters in Si DG-MOSFETs
64(5)
3.3.1 Backscattering Coefficient
64(2)
3.3.2 Current Drive
66(1)
3.3.3 Gate and Drain Bias Dependences
67(2)
3.4 Quasi-ballistic Transport in Si Junctionless Transistors
69(7)
3.4.1 Device Structure and Simulation Conditions
70(1)
3.4.2 Influence of SR Scattering
71(3)
3.4.3 Influence of II Scattering
74(1)
3.4.4 Backscattering Coefficient
75(1)
3.5 Quasi-ballistic Transport in GAA-Si Nanowire MOSFETs
76(9)
3.5.1 Device Structure and 3DMSB-MC Method
76(1)
3.5.2 Scattering Rates for 1-D Electron Gas
77(2)
3.5.3 ID -- VG Characteristics and Backscattering Coefficient
79(2)
References
81(4)
4 Phonon Transport in Si Nanostructures
85(27)
4.1 Monte Carlo Simulation Method
87(4)
4.1.1 Phonon Dispersion Model
87(1)
4.1.2 Particle Simulation of Phonon Transport
88(1)
4.1.3 Free Flight and Scattering
89(2)
4.2 Simulation of Thermal Conductivity
91(11)
4.2.1 Thermal Conductivity of Bulk Silicon
91(3)
4.2.2 Thermal Conductivity of Silicon Thin Films
94(4)
4.2.3 Thermal conductivity of silicon nanowires
98(2)
4.2.4 Discussion on Boundary Scattering Effect
100(2)
4.3 Simulation of Heat Conduction in Devices
102(10)
4.3.1 Simulation Method
102(1)
4.3.2 Simple 1-D Structure
103(3)
4.3.3 FinFET Structure
106(3)
References
109(3)
5 Carrier Transport in High-mobility MOSFETs
112(39)
5.1 Quantum-corrected MC Simulation of High-mobility MOSFETs
112(12)
5.1.1 Device Structure and Band Structures of Materials
112(2)
5.1.2 Band Parameters of Si, Ge, and III-V Semiconductors
114(1)
5.1.3 Polar-optical Phonon (POP) Scattering in III-V Semiconductors
115(1)
5.1.4 Advantage of UTB Structure
116(3)
5.1.5 Drive Current of III-V, Ge and Si n-MOSFETs
119(5)
5.2 Source-drain Direct Tunneling in Ultrascaled MOSFETs
124(1)
5.3 Wigner Monte Carlo (WMC) Method
125(13)
5.3.1 Wigner Transport Formalism
126(3)
5.3.2 Relation with Quantum-corrected MC Method
129(2)
5.3.3 WMC Algorithm
131(2)
5.3.4 Description of Higher-order Quantized Subbands
133(1)
5.3.5 Application to Resonant-tunneling Diode
133(5)
5.4 Quantum Transport Simulation of III-V n-MOSFETs with Multi-subband WMC (MSB-WMC) Method
138(13)
5.4.1 Device Structure
138(1)
5.4.2 POP Scattering Rate for 2-D Electron Gas
139(1)
5.4.3 ID -- VG Characteristics for InGaAs DG-MOSFETs
139(4)
5.4.4 Channel Length Dependence of SDT Leakage Current
143(1)
5.4.5 Effective Mass Dependence of Subthreshold Current Properties
144(3)
References
147(4)
6 Atomistic Simulations of Si, Ge and III-V Nanowire MOSFETs
151(40)
6.1 Phonon-limited Electron Mobility in Si Nanowires
151(17)
6.1.1 Band Structure Calculations
152(9)
6.1.2 Electron-phonon Interaction
161(1)
6.1.3 Electron Mobility
162(6)
6.2 Comparison of Phonon-limited Electron Mobilities between Si and Ge nanowires
168(5)
6.3 Ballistic Performances of Si and InAs Nanowire MOSFETs
173(8)
6.3.1 Band Structures
174(1)
6.3.2 Top-of-the-barrier Model
174(3)
6.3.3 ID -- VG Characteristics
177(1)
6.3.4 Quantum Capacitances
178(1)
6.3.5 Power-delay-product
179(2)
6.4 Ballistic Performances of InSb, InAs, and GaSb Nanowire MOSFETs
181(10)
6.4.1 Band Structures
182(1)
6.4.2 ID -- VG Characteristics
182(4)
6.4.3 Power-delay-product
186(1)
Appendix A Atomistic Poisson Equation
187(1)
Appendix B Analytical Expressions of Electron-phonon Interaction Hamiltonian Matrices
188(1)
References
189(2)
7 2-D Materials and Devices
191(56)
7.1 2-D Materials
191(7)
7.1.1 Fundamental Properties of Graphene, Silicene and Germanene
192(5)
7.1.2 Features of 2-D Materials as an FET Channel
197(1)
7.2 Graphene Nanostructures with a Bandgap
198(17)
7.2.1 Armchair-edged Graphene Nanoribbons (A-GNRs)
199(4)
7.2.2 Relaxation Effects of Edge Atoms
203(2)
7.2.3 Electrical Properties of A-GNR-FETs Under Ballistic Transport
205(4)
7.2.4 Bilayer Graphenes (BLGs)
209(5)
7.2.5 Graphene Nanomeshes (GNMs)
214(1)
7.3 Influence of Bandgap Opening on Ballistic Electron Transport in BLG and A-GNR-MOSFETs
215(6)
7.3.1 Small Bandgap Regime
217(2)
7.3.2 Large Bandgap Regime
219(2)
7.4 Silicene, Germanene and Graphene Nanoribbons
221(2)
7.4.1 Bandgap vs Ribbon Width
222(1)
7.4.2 Comparison of Band Structures
222(1)
7.5 Ballistic MOSFETs with Silicene, Germanene and Graphene nanoribbons
223(5)
7.5.1 ID -- VG Characteristics
223(1)
7.5.2 Quantum Capacitances
224(1)
7.5.3 Channel Charge Density and Average Electron Velocity
225(1)
7.5.4 Source-drain Direct Tunneling (SDT)
226(2)
7.6 Electron Mobility Calculation for Graphene on Substrates
228(8)
7.6.1 Band Structure
229(1)
7.6.2 Scattering Mechanisms
229(2)
7.6.3 Carrier Degeneracy
231(1)
7.6.4 Electron Mobility Considering Surface Optical Phonon Scattering of Substrates
232(2)
7.6.5 Electron Mobility Considering Charged Impurity Scattering
234(2)
7.7 Germanane MOSFETs
236(11)
7.7.1 Atomic Model for Germanane Nanoribbon Structure
237(1)
7.7.2 Band Structure and Electron Effective Mass
238(2)
7.7.3 Electron Mobility
240(2)
Appendix A Density-of-states for Carriers in Graphene
242(1)
References
242(5)
Index 247
Hideaki Tsuchiya, Associate Professor, Kobe University, Japan. Professor Tsuchiya received his Ph. D in electronic engineering from Kobe University, Kobe, Japan, in 1993. He has lectured for over ten years to graduate students on the Advanced Theory of Integrated Nanoscale Devices. His research interests focus on quantum transport simulation and atomistic modeling of nanoscale devices. He has co-written over 100 journals articles and Proceedings.

Yoshinari Kamakura, Associate Professor, Department of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Japan. Professor Kamakura obtained his PhD from Osaka University in 1994 and has worked in various roles at the same institution. His research interests include semiconductor device engineering and he has co-authored a number of journals articles on the subject. He is a member of the IEEE.