Muutke küpsiste eelistusi

E-raamat: Catalan Numbers

(Moscow Pedagogical State University, Russia)
  • Formaat - PDF+DRM
  • Hind: 257,40 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Catalan numbers, named after the French-Belgian mathematician Eugène Charles Catalan (1814-1894), arise in a variety of combinatorial problems. They have many interesting properties, a rich history, and numerous arithmetic, number-theoretical, analytical, and combinatorial connections, as well as a variety of classical and modern applications. Considering the long list of open problems and questions related to the classical case, its relatives (Bell numbers, Motzkin numbers, Narayana numbers, etc.) and its generalizations, this book provides a broad perspective on the theory of this class of special numbers that will be of interest to professionals, students, and a general audience.The book begins with the history of the problem, before defining the considered numerical sets. The recurrence equation, closed formula, and generating function are then presented, followed by the simplest properties and number-theoretical properties. Later chapters discuss the relationships between Catalan numbers and other special numbers, as well as their applications and open problems.