Acknowledgments |
|
xxv | |
About the Author |
|
xxvii | |
Preface |
|
xxix | |
|
|
1 | (48) |
|
Objectives of This Chapter |
|
|
1 | (1) |
|
|
1 | (14) |
|
1.1.1 Installing, Starting, and Exiting R |
|
|
2 | (2) |
|
1.1.2 R at First Sight: R Console, Menus, and Toolbar |
|
|
4 | (1) |
|
|
5 | (2) |
|
|
7 | (1) |
|
1.1.5 R Base Package and Add-on Packages |
|
|
8 | (1) |
|
|
9 | (1) |
|
1.1.7 Functions and Arguments in R |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.1.9 How to Open an Existing Dataset via the Command Line or the Menus in RStudio |
|
|
11 | (3) |
|
1.1.10 How to Save R Output |
|
|
14 | (1) |
|
1.1.11 What If I Have a Question? How Do I Get Help? |
|
|
14 | (1) |
|
1.2 R Data Structures: Vectors, Matrices, Data Frames, and Lists |
|
|
15 | (7) |
|
|
16 | (2) |
|
|
18 | (1) |
|
|
19 | (2) |
|
|
21 | (1) |
|
|
22 | (10) |
|
1.3.1 Selecting Variables |
|
|
22 | (1) |
|
1.3.2 Selecting Observations |
|
|
23 | (1) |
|
1.3.3 Selecting Observations and Variables |
|
|
23 | (1) |
|
1.3.4 Creating a New Variable |
|
|
24 | (1) |
|
1.3.5 Recoding a Variable |
|
|
25 | (3) |
|
1.3.6 Creating a Dummy or Binary Variable |
|
|
28 | (1) |
|
1.3.7 Reverse Coding with rec () |
|
|
29 | (1) |
|
1.3.8 Labeling Values for Factor Variables |
|
|
29 | (1) |
|
1.3.9 Labeling a Variable |
|
|
30 | (1) |
|
1.3.10 The row sums () and row means () Functions in the sjmi.sc Package |
|
|
30 | (1) |
|
1.3.11 How to Deal With Missing Values When Recoding Variables |
|
|
31 | (1) |
|
1.3.12 Other Useful Data Management Functions |
|
|
31 | (1) |
|
1.4 Data Management with the tidyverse and sjmisc Packages |
|
|
32 | (3) |
|
|
35 | (10) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (2) |
|
|
40 | (2) |
|
1.5.5 Scatterplots with ggplots2 |
|
|
42 | (1) |
|
|
43 | (2) |
|
1.6 Summary of R Commands in This Chapter |
|
|
45 | (4) |
|
|
48 | (1) |
|
|
48 | (1) |
|
2 Review of Basic Statistics |
|
|
49 | (46) |
|
Objectives of This Chapter |
|
|
49 | (1) |
|
2.1 Understand Your Data Using Descriptive Statistics |
|
|
50 | (1) |
|
2.2 Descriptive Statistics for Continuous Variables Using R |
|
|
50 | (7) |
|
2.2.1 The summary () Function |
|
|
50 | (2) |
|
2.2.2 The tapplyO Function for Grouped Summaries |
|
|
52 | (1) |
|
2.2.3 The group by () Function and the summarize () Function for Grouped Summaries |
|
|
53 | (1) |
|
2.3.4 The group by () Function and the descr () Function for Grouped Summaries |
|
|
54 | (1) |
|
2.2.5 Descriptive Statistics for Multiple Variables With stat.descO |
|
|
54 | (1) |
|
2.2.6 Descriptive Statistics for Multiple Variables With descr () |
|
|
55 | (1) |
|
2.2.7 The group, by () Function and the descr () Function for Grouped Summaries of Multiple Variables |
|
|
56 | (1) |
|
2.3 Frequency Distribution for Categorical Variables Using R |
|
|
57 | (5) |
|
2.3.1 The table () Function for a Single Categorical Variable |
|
|
57 | (1) |
|
2.3.2 The frq() Function in the sjmisc Package for a Single Categorical Variable |
|
|
58 | (1) |
|
2.3.3 The table () Function for a Two-Way Table |
|
|
59 | (1) |
|
2.3.4 The CrossTable() Function in the gmodels Package |
|
|
60 | (2) |
|
2.4 Simple Linear Regression |
|
|
62 | (6) |
|
2.4.1 Simple Linear Regression: An Introduction |
|
|
62 | (1) |
|
2.4.2 The lm() Function and Extractor Functions |
|
|
63 | (1) |
|
2.4.3 Interpreting R Output: The Coefficients Table |
|
|
64 | (1) |
|
2.4.4 Interpreting R Output: The Multiple R2 and the F Statistic |
|
|
65 | (1) |
|
|
66 | (1) |
|
2.4.6 The coef () Function and the confintO Function |
|
|
67 | (1) |
|
2.4.7 Effect Size With the eta_sq() Function |
|
|
67 | (1) |
|
2.4.8 Reporting the Results |
|
|
67 | (1) |
|
2.5 Multiple Linear Regression |
|
|
68 | (11) |
|
2.5.1 Multiple Linear Regression: An Introduction |
|
|
68 | (1) |
|
|
68 | (1) |
|
2.5.3 Interpreting R Output: The Coefficients Table |
|
|
69 | (1) |
|
2.5.4 Interpreting R Output: The Multiple R2 and the F Statistic |
|
|
70 | (1) |
|
2.5.5 ThecoefO Function and the confint () Function |
|
|
71 | (1) |
|
|
72 | (1) |
|
2.5.7 Effect Size With the eta_sq() Function |
|
|
72 | (1) |
|
2.5.8 Computing the Predicted Values With the ggpredict () Function in ggeffects |
|
|
73 | (5) |
|
2.5.9 Reporting the Results |
|
|
78 | (1) |
|
|
79 | (6) |
|
2.6.1 The Chi-Square Test: An Introduction |
|
|
79 | (1) |
|
2.6.2 The CrossTable () Function in the gmodels Package |
|
|
79 | (2) |
|
2.6.3 The chisq. test () Function |
|
|
81 | (1) |
|
|
81 | (3) |
|
2.6.5 Follow-Up Chi-Square Test With the chisq. test() Function |
|
|
84 | (1) |
|
2.6.6 Reporting the Results |
|
|
85 | (1) |
|
2.7 Making Publication-Quality Tables Using R |
|
|
85 | (3) |
|
2.8 General Guidelines for Reporting Results |
|
|
88 | (1) |
|
2.9 Summary of R Commands in this Chapter |
|
|
89 | (6) |
|
|
93 | (1) |
|
|
93 | (2) |
|
3 Logistic Regression for Binary Data |
|
|
95 | (48) |
|
Objectives of This Chapter |
|
|
95 | (1) |
|
3.1 Logistic Regression Models: An Introduction |
|
|
96 | (14) |
|
3.1.1 Why Do We Need a Logistic Transformation? |
|
|
96 | (2) |
|
3.1.2 Probabilities, Odds, and Odds Ratios |
|
|
98 | (2) |
|
3.1.3 Transformation Among Probabilities, Odds, and Log Odds in Logistic Regression |
|
|
100 | (1) |
|
3.1.4 Bernoulli Distributions, the Likelihood Function, and Maximum Likelihood Estimation |
|
|
101 | (3) |
|
3.1.5 Goodness-of-Fit Statistics |
|
|
104 | (3) |
|
3.1.6 Testing Significance of Predictors |
|
|
107 | (1) |
|
3.1.7 Interpretation of Model Parameter Estimates in Logistic Regression |
|
|
108 | (2) |
|
3.2 Research Example and Description of the Data and Sample |
|
|
110 | (1) |
|
3.3 Generalized Linear Models and the glm () Function |
|
|
111 | (2) |
|
3.3.1 Generalized Linear Models and the glm() Function: An Introduction |
|
|
111 | (1) |
|
3.3.2 The glm () Function |
|
|
112 | (1) |
|
3.4 Simple Logistic Regression Using R |
|
|
113 | (6) |
|
3.4.1 Simple Logistic Regression: R Syntax |
|
|
113 | (1) |
|
3.4.2 Interpreting R Output |
|
|
114 | (1) |
|
3.4.3 Interpreting the Coefficients |
|
|
115 | (1) |
|
3.4.4 Interpreting the Odds Ratio |
|
|
116 | (1) |
|
3.4.5 Interpreting the Pseudo R7 |
|
|
116 | (2) |
|
3.4.6 AIC and BIC Statistics |
|
|
118 | (1) |
|
3.4.7 Testing the Overall Model Using the Likelihood Ratio Test |
|
|
118 | (1) |
|
3.5 Multiple Logistic Regression Using R |
|
|
119 | (14) |
|
3.5.1 Interpretation of Model Parameter Estimates and Odds Ratios in Multiple Logistic Regression |
|
|
120 | (1) |
|
3.5.2 Model Fitting Based on the Likelihood Ratio Test and Information Criteria Statistics |
|
|
120 | (1) |
|
3.5.3 The glm() Function for Multiple Logistic Regression |
|
|
121 | (1) |
|
3.5.4 Interpreting R Output |
|
|
122 | (1) |
|
3.5.5 Interpreting the Coefficients |
|
|
122 | (1) |
|
3.5.6 Interpreting the Odd Ratios |
|
|
123 | (1) |
|
3.5.7 Interpreting the Pseudo R2 |
|
|
124 | (1) |
|
3.5.8 AIC and BIC Statistics |
|
|
125 | (1) |
|
3.5.9 Hosmer-Lemeshow Goodness-of-Fit Statistic |
|
|
125 | (1) |
|
3.5.10 Testing the Overall Model Using the Likelihood Ratio Test |
|
|
126 | (1) |
|
3.5.11 Model Comparison Using the Likelihood Ratio Test |
|
|
127 | (1) |
|
3.5.12 Interpreting the Marginal Effects in Logistic Regression |
|
|
128 | (1) |
|
3.5.13 Computing the Predicted Probabilities With the predict () Function |
|
|
128 | (1) |
|
3.5.14 Computing the Predicted Probabilities With the ggpredict() Function in the ggeffects Package |
|
|
129 | (4) |
|
3.6 Probit Regression Using R |
|
|
133 | (2) |
|
3.6.1 Interpretation of Model Parameter Estimates in Probit Regression |
|
|
133 | (1) |
|
3.6.2 The glm () Function for Multiple Probit Regression |
|
|
133 | (1) |
|
3.6.3 Interpreting Probit Coefficients in R Output |
|
|
134 | (1) |
|
3.7 Making Publication-Quality Tables |
|
|
135 | (1) |
|
3.7.1 Presenting the Results Using the stargazer Package |
|
|
135 | (1) |
|
3.8 Reporting the Results |
|
|
136 | (2) |
|
3.9 Summary of R Commands in This Chapter |
|
|
138 | (5) |
|
|
141 | (1) |
|
|
141 | (2) |
|
4 Proportional Odds Models for Ordinal Response Variables |
|
|
143 | (46) |
|
Objectives of This Chapter |
|
|
143 | (1) |
|
4.1 Proportional Odds Models: An Introduction |
|
|
144 | (5) |
|
4.1.1 Odds and Odds Ratios in PO Models |
|
|
145 | (3) |
|
|
148 | (1) |
|
4.1.3 Goodness-of-Fit Statistics |
|
|
148 | (1) |
|
4.1.4 Interpretation of Model Parameter Estimates |
|
|
149 | (1) |
|
4.2 Research Example and Description of the Data and Sample |
|
|
149 | (1) |
|
4.3 Fitting a One-Predictor PO Model Using the elm () Function |
|
|
150 | (7) |
|
4.3.1 Packages and Functions for Proportional Odds Models in R |
|
|
150 | (1) |
|
4.3.2 The elm () Function in the Ordinal Package |
|
|
150 | (1) |
|
4.3.3 The PO Model: One-Predictor Model With the elm () Function |
|
|
151 | (1) |
|
4.3.4 Interpreting R Output |
|
|
151 | (1) |
|
4.3.5 Interpreting the Coefficients and the Intercepts/Thresholds |
|
|
152 | (1) |
|
|
153 | (1) |
|
4.3.7 Interpreting the Odds Ratio of Being at or Below a Particular Category |
|
|
153 | (1) |
|
4.3.8 Interpreting the Odds Ratio of Being Above a Particular Category |
|
|
154 | (1) |
|
4.3.9 Model Fit Statistics |
|
|
154 | (2) |
|
4.3.10 Using the Likelihood Ratio Test to Test the PO Assumption |
|
|
156 | (1) |
|
4.4 Fitting a Multiple-Predictor PO Model Using the elm () Function |
|
|
157 | (9) |
|
4.4.1 The PO Model: Multiple-Predictor Model With the clm() Function |
|
|
157 | (1) |
|
4.4.2 Interpreting R Output |
|
|
158 | (1) |
|
4.4.3 Interpreting the Coefficients and the Intercepts/Thresholds |
|
|
158 | (1) |
|
4.4.4 Interpreting the Odds Ratios of Being Above a Particular Category |
|
|
159 | (1) |
|
4.4.5 Interpreting the Odds Ratios of Being at or Below a Particular Category |
|
|
160 | (1) |
|
4.4.6 Computing the Predicted Probabilities With the ggpredict() Function in the ggeffects Package |
|
|
161 | (1) |
|
4.4.7 Model Fit Statistics |
|
|
162 | (3) |
|
4.4.8 Using the Likelihood Ratio Test to Test the PO Assumption |
|
|
165 | (1) |
|
4.4.9 Model Comparison Using the Likelihood Ratio Test |
|
|
165 | (1) |
|
4.5 Fitting a Single-Predictor PO Model Using the vglm() Function |
|
|
166 | (4) |
|
4.5.1 The vglm() Function in the vsam Package |
|
|
166 | (1) |
|
4.5.2 Using the vglm() Function to Fit a Single-Predictor PO Model |
|
|
166 | (2) |
|
4.5.3 Interpreting R Output |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
169 | (1) |
|
4.5.6 Logit Coefficients of Being at or Above a Category |
|
|
169 | (1) |
|
4.5.7 Odds Ratios of Being at or Above a Category |
|
|
170 | (1) |
|
4.6 Fitting a Multiple-Predictor PO Model Using the vglmf) Function |
|
|
170 | (10) |
|
4.6.1 Using the vglm() Function to Fit a Multiple-Predictor PO Model |
|
|
170 | (3) |
|
4.6.2 Logit Coefficients of Being at or Above a Category in the Multiple-Predictor PO Model |
|
|
173 | (1) |
|
4.6.3 Computing the Predicted Probabilities With the predict () Function |
|
|
174 | (1) |
|
4.6.4 Computing the Predicted Probabilities With the ggpredict() Function in the ggeffects Package |
|
|
174 | (2) |
|
4.6.5 Computing the Cumulative Probabilities With the ggpredict() Function |
|
|
176 | (2) |
|
4.6.6 Using the lrtest() Function to Test the PO Assumption |
|
|
178 | (1) |
|
4.6.7 Model Comparison Using the Likelihood Ratio Test With the lrtest () Function |
|
|
179 | (1) |
|
4.7 Making Publication-Quality Tables |
|
|
180 | (2) |
|
4.7.1 Presenting the Results of the elm Models Using the stargazer Package |
|
|
180 | (1) |
|
4.7.2 Presenting the Results of the vglm Models Using the texreg Package |
|
|
181 | (1) |
|
4.8 Reporting the Results |
|
|
182 | (2) |
|
4.9 Summary of R Commands in This Chapter |
|
|
184 | (5) |
|
|
188 | (1) |
|
|
188 | (1) |
|
5 Generalized Ordinal Logistic Regression Models and Partial Proportional Odds Models |
|
|
189 | (40) |
|
Objectives of This Chapter |
|
|
189 | (1) |
|
5.1 Partial Proportional Odds Models and Generalized Ordinal Logistic Regression Models: An Introduction |
|
|
190 | (4) |
|
5.1.1 Odds and Odds Ratios |
|
|
191 | (2) |
|
|
193 | (1) |
|
5.1.3 Interpretation of Model Parameter Estimates |
|
|
194 | (1) |
|
5.2 Research Example and Description of the Data and Sample |
|
|
194 | (1) |
|
5.3 Generalized Ordinal Logistic Regression Models with R |
|
|
195 | (14) |
|
5.3.1 The vglm() Function in the vgam Package |
|
|
195 | (1) |
|
5.3.2 The Multiple-Predictor PO Model |
|
|
195 | (2) |
|
5.3.3 Using the lrtest() Function to Test the PO Assumption |
|
|
197 | (1) |
|
5.3.4 The Multiple-Predictor Generalized Ordinal Logistic Regression Model |
|
|
197 | (1) |
|
5.3.5 Interpreting R Output |
|
|
198 | (1) |
|
5.3.6 Logit Coefficients of Being at or Below a Category |
|
|
199 | (1) |
|
5.3.7 Odds Ratios of Being at or Below a Category |
|
|
199 | (1) |
|
5.3.8 Model Fit Statistics |
|
|
200 | (3) |
|
5.3.9 Logit Coefficients of Being at or Above a Category |
|
|
203 | (1) |
|
5.3.10 Odds Ratios of Being at or Above a Category |
|
|
204 | (2) |
|
5.3.11 Computing the Predicted Probabilities With the ggpredict() Function in the ggeffects Package |
|
|
206 | (2) |
|
5.3.12 Computing the Predicted Cumulative Probabilities With the ggpredict() Function |
|
|
208 | (1) |
|
5.4 Partial Proportional Odds Models With R |
|
|
209 | (11) |
|
5.4.1 The Partial Proportional Odds (PPO) Model With the vglm() Function |
|
|
209 | (2) |
|
5.4.2 Interpreting R Output |
|
|
211 | (2) |
|
5.4.3 Interpreting the Odds Ratios of Being at or Below a Particular Category |
|
|
213 | (1) |
|
5.4.4 Model Fit Statistics |
|
|
213 | (1) |
|
5.4.5 Logit Coefficients of Being at or Above a Category |
|
|
214 | (1) |
|
5.4.6 Interpreting R Output |
|
|
215 | (2) |
|
5.4.7 Interpreting the Odds Ratios of Being at or Above a Particular Category |
|
|
217 | (1) |
|
5.4.8 Computing the Predicted Probabilities With the ggpredict() Function for the PPO Model |
|
|
218 | (2) |
|
5.4.9 Computing the Predicted Cumulative Probabilities With the ggpredict() Function |
|
|
220 | (1) |
|
5.5 Making Publication-Quality Tables |
|
|
220 | (1) |
|
5.6 Reporting the Results |
|
|
221 | (3) |
|
5.7 Summary of R Commands in This Chapter |
|
|
224 | (5) |
|
|
227 | (1) |
|
|
227 | (2) |
|
6 Other Ordinal Logistic Regression Models |
|
|
229 | (42) |
|
Objectives of This Chapter |
|
|
229 | (1) |
|
6.1 Continuation Ratio Models |
|
|
230 | (17) |
|
6.1.1 Continuation Ratio Models: An Introduction |
|
|
230 | (1) |
|
6.1.2 Conditional Probabilities, Odds, and Odds Ratios |
|
|
231 | (2) |
|
6.1.3 Interpretation of Model Parameter Estimates |
|
|
233 | (1) |
|
6.1.4 Research Example and Description of the Data and Sample |
|
|
233 | (1) |
|
6.1.5 The vglm() Function With sratio or cratio in the vgam Package |
|
|
233 | (1) |
|
6.1.6 The CR Model: Multiple-Predictor Model With the vglm() Function |
|
|
234 | (1) |
|
6.1.7 Interpreting R Output |
|
|
235 | (1) |
|
6.1.8 Interpreting the Odds Ratio of Stopping in a Particular Category |
|
|
236 | (1) |
|
6.1.9 Interpreting Odds Ratios of Being Above a Particular Category |
|
|
237 | (2) |
|
6.1.10 Model Fit Statistics |
|
|
239 | (1) |
|
6.1.11 Computing the Predicted Probabilities With the ggpredict() Function in the ggeffects Package |
|
|
240 | (3) |
|
6.1.12 The CR Model With Non-Proportional Odds |
|
|
243 | (4) |
|
6.2 Adjacent Categories Models |
|
|
247 | (9) |
|
6.2.1 Adjacent Categories Models: An Introduction |
|
|
247 | (1) |
|
6.2.2 Odds and Odds Ratios in AC Models |
|
|
247 | (2) |
|
6.2.3 Interpretation of Model Parameter Estimates |
|
|
249 | (1) |
|
6.2.4 Research Example and Description of the Data and Sample |
|
|
249 | (1) |
|
6.2.5 The vglm() Function With the acat Family in the vgam Package |
|
|
250 | (1) |
|
6.2.6 The AC Model: Multiple-Predictor Model |
|
|
250 | (1) |
|
6.2.7 Interpreting R Output |
|
|
251 | (2) |
|
6.2.8 Interpreting the Odds Ratios of Being in a Higher Category [ j + 1] Versus the Next Lower Category j |
|
|
253 | (1) |
|
6.2.9 Interpreting the Odds Ratios of Being in a Lower Category for the AC Model |
|
|
254 | (1) |
|
6.2.10 Model Fit Statistics |
|
|
255 | (1) |
|
6.3 Stereotype Logistic Regression Models |
|
|
256 | (7) |
|
6.3.1 Stereotype Logistic Regression Models: An Introduction |
|
|
256 | (1) |
|
6.3.2 Odds and Odds Ratios in Stereotype Logistic Regression Models |
|
|
257 | (2) |
|
6.3.3 Interpretation of Model Parameter Estimates |
|
|
259 | (1) |
|
6.3.4 Research Example and Description of the Data and Sample |
|
|
259 | (1) |
|
6.3.5 The rrvglm() Function With the multinomial Family in the vgam Package |
|
|
259 | (1) |
|
6.3.6 The SL Model: Multiple-Predictor Model With R |
|
|
260 | (1) |
|
6.3.7 Interpreting the Output |
|
|
261 | (1) |
|
6.3.8 Interpreting the Odds Ratios of Being in a Particular Category Versus the Base Category |
|
|
262 | (1) |
|
6.3.9 Interpreting the Odds Ratios of Being in the Base Category Versus a Particular Category |
|
|
262 | (1) |
|
6.4 Making Publication-Quality Tables |
|
|
263 | (1) |
|
6.4.1 Presenting the Results of the vglm Models Using the texreg Package |
|
|
263 | (1) |
|
6.5 Reporting the Results |
|
|
264 | (3) |
|
6.6 Summary of R Commands in This Chapter |
|
|
267 | (4) |
|
|
270 | (1) |
|
|
270 | (1) |
|
7 Multinomial Logistic Regression Models |
|
|
271 | (38) |
|
Objectives of This Chapter |
|
|
271 | (1) |
|
7.1 Multinomial Logistic Regression Models: An Introduction |
|
|
272 | (3) |
|
7.1.1 The Multinomial Distribution |
|
|
272 | (1) |
|
7.1.2 Odds in Multinomial Logistic Models |
|
|
273 | (1) |
|
7.1.3 Odds Ratios or Relative Risk Ratios in Multinomial Logistic Regression Models |
|
|
274 | (1) |
|
7.1.4 Model Fit Statistics |
|
|
275 | (1) |
|
7.1.5 Interpretation of Model Parameter Estimates |
|
|
275 | (1) |
|
7.2 Research Example and Description of the Data and Sample |
|
|
275 | (1) |
|
7.3 Fitting a One-Predictor Multinomial Logistic Regression Model With R |
|
|
276 | (7) |
|
7.3.1 Packages and Functions for Multinomial Logistic Regression Models in R |
|
|
276 | (1) |
|
7.3.2 The vglm () Function With the multinomial Family in the vgam Package |
|
|
276 | (1) |
|
7.3.3 The Multinomial Logistic Regression Model: One-Predictor Model |
|
|
277 | (1) |
|
7.3.4 Interpreting the Output |
|
|
278 | (1) |
|
7.3.5 Interpreting the Odds Ratios of Being in a Particular Category Versus the Base Category for the Multinomial Logistic Regression Model |
|
|
279 | (1) |
|
7.3.6 Model Fit Statistics |
|
|
280 | (3) |
|
7.4 Fitting a Multiple-Predictor Multinomial Logistic Regression Model With R |
|
|
283 | (11) |
|
7.4.1 The Multinomial Logistic Regression Model: Multiple-Predictor Model |
|
|
283 | (1) |
|
7.4.2 Interpreting R Output |
|
|
284 | (2) |
|
7.4.3 Interpreting the Odds Ratios of Being in a Category j Versus the Base Category 1 |
|
|
286 | (2) |
|
7.4.4 Model Fit Statistics |
|
|
288 | (1) |
|
7.4.5 Interpreting the Predicted Probabilities With the ggpredict() Function in the ggeffects Package |
|
|
289 | (5) |
|
7.4.6 Model Comparisons Using the Likelihood Ratio Test |
|
|
294 | (1) |
|
7.5 Multinomial Logistic Regression With the multinom() Function in the nnet Package |
|
|
294 | (3) |
|
7.6 Multinomial Logistic Regression With the mlogit() Function in the mlogit Package |
|
|
297 | (3) |
|
7.7 Making Publication-Quality Tables |
|
|
300 | (3) |
|
7.7.1 Presenting the Results of the vglm Models Using the texreg Package |
|
|
300 | (3) |
|
7.8 Reporting the Results |
|
|
303 | (2) |
|
7.9 Summary of R Commands in This Chapter |
|
|
305 | (4) |
|
|
308 | (1) |
|
|
308 | (1) |
|
8 Poisson Regression Models |
|
|
309 | (32) |
|
Objectives of This Chapter |
|
|
309 | (1) |
|
8.1 Poisson Regression Models: An Introduction |
|
|
310 | (3) |
|
8.1.1 The Poisson Distribution |
|
|
311 | (1) |
|
8.1.2 Incidence Rate Ratios in Poisson Regression Models |
|
|
311 | (1) |
|
8.1.3 Model Fit Statistics |
|
|
312 | (1) |
|
8.1.4 Interpretation of Model Parameter Estimates |
|
|
312 | (1) |
|
8.1.5 Interpreting an Incidence Rate Ratio as a Percentage Change in an Incidence Rate |
|
|
312 | (1) |
|
8.1.6 Interpreting Marginal Effects as Changes in Predicted Counts |
|
|
313 | (1) |
|
8.2 Research Example and Description of the Data and Sample |
|
|
313 | (1) |
|
8.3 Fitting a One-Predictor Poisson Regression Model With R |
|
|
314 | (6) |
|
8.3.1 Packages and Functions for Poisson Regression Models in R |
|
|
314 | (1) |
|
|
314 | (1) |
|
8.3.3 The Poisson Regression Model: One-Predictor Model |
|
|
314 | (1) |
|
8.3.4 Interpreting the Output |
|
|
315 | (1) |
|
8.3.5 Interpreting the Incidence Rate Ratios in the One-Predictor Poisson Regression Model |
|
|
316 | (1) |
|
8.3.6 Model Fit Statistics |
|
|
317 | (3) |
|
8.4 Fitting a Multiple-Predictor Poisson Regression Model With R |
|
|
320 | (10) |
|
8.4.1 The Poisson Regression Model: Multiple-Predictor Model |
|
|
320 | (1) |
|
8.4.2 Interpreting R Output |
|
|
321 | (1) |
|
8.4.3 Interpreting the Incidence Rate Ratios (IRRs) in the Multiple-Predictor Poisson Model |
|
|
322 | (1) |
|
8.4.4 Model Fit Statistics |
|
|
323 | (3) |
|
8.4.5 Interpreting the Marginal Effects in the Poisson Regression Model |
|
|
326 | (1) |
|
8.4.6 Interpreting the Predicted Counts With the ggpredict() Function in the ggeffects Package |
|
|
326 | (3) |
|
8.4.7 Model Comparisons Using the Likelihood Ratio Test |
|
|
329 | (1) |
|
8.5 Poisson Regression With the vglm () Function in the VGAM Package |
|
|
330 | (3) |
|
8.6 Making Publication-Quality Tables |
|
|
333 | (2) |
|
8.6.1 Presenting the Results Using the stargazer Package |
|
|
333 | (2) |
|
8.7 Reporting the Results |
|
|
335 | (1) |
|
8.8 Summary of R Commands in This Chapter |
|
|
336 | (5) |
|
|
339 | (1) |
|
|
339 | (2) |
|
9 Negative Binomial Regression Models and Zero-Inflated Models |
|
|
341 | (40) |
|
Objectives of This Chapter |
|
|
341 | (1) |
|
9.1 Negative Binomial Regression Models: An Introduction |
|
|
342 | (3) |
|
9.1.1 The Negative Binomial Distribution |
|
|
343 | (1) |
|
9.1.2 Incidence Rate Ratios in Negative Binomial Regression Models |
|
|
344 | (1) |
|
9.1.3 Model Fit Statistics |
|
|
344 | (1) |
|
9.1.4 Interpretation of Model Parameter Estimates |
|
|
345 | (1) |
|
9.2 Research Example and Description of the Data and Sample |
|
|
345 | (1) |
|
9.3 Fitting a Multiple-Predictor Negative Binomial Regression Model With R |
|
|
345 | (13) |
|
9.3.1 Packages and Functions for Negative Binomial Regression Models in R |
|
|
345 | (1) |
|
9.3.2 The glm.nb() Function |
|
|
346 | (1) |
|
9.3.3 The Negative Binomial Regression Model: Multiple-Predictor Model |
|
|
346 | (1) |
|
9.3.4 Interpreting the Output |
|
|
347 | (2) |
|
9.3.5 Interpreting the Incidence Rate Ratios in the Negative Binomial Regression Model |
|
|
349 | (1) |
|
9.3.6 Interpreting the Marginal Effects in the Negative Binomial Regression Model |
|
|
350 | (1) |
|
9.3.7 Model Fit Statistics |
|
|
350 | (4) |
|
9.3.8 Interpreting the Predicted Counts With the ggpredict() Function in the ggeffects Package |
|
|
354 | (2) |
|
9.3.9 Testing the Dispersion Parameter Using the Likelihood Ratio Test |
|
|
356 | (2) |
|
9.4 Negative Binomial Regression With the vglm () Function in the VGAM Package |
|
|
358 | (3) |
|
9.5 Zero-Inflated Poisson Regression With the zeroinf() Function in the pscl Package |
|
|
361 | (6) |
|
9.6 Zero-Inflated Negative Binomial Regression With the zeroinf() Function in the pscl Package |
|
|
367 | (5) |
|
9.7 Making Publication-Quality Tables |
|
|
372 | (2) |
|
9.7.1 Presenting the Results Using the stargazer Package |
|
|
372 | (1) |
|
9.7.2 Presenting the Results Using the texreg Package |
|
|
373 | (1) |
|
9.8 Reporting the Results |
|
|
374 | (2) |
|
9.9 Summary of R Commands in This Chapter |
|
|
376 | (5) |
|
|
380 | (1) |
|
|
380 | (1) |
|
10 Multilevel Modeling for Continuous Response Variables |
|
|
381 | (38) |
|
Objectives of This Chapter |
|
|
381 | (1) |
|
10.1 Multilevel Modeling: An Introduction |
|
|
382 | (5) |
|
10.1.1 Multilevel Data Structure |
|
|
382 | (1) |
|
10.1.2 Intraclass Correlation |
|
|
382 | (1) |
|
10.1.3 Overview of a Basic Two-Level Model |
|
|
383 | (1) |
|
10.1.4 Model-Building Strategies |
|
|
384 | (1) |
|
10.1.5 Model Fit Statistics |
|
|
385 | (1) |
|
|
386 | (1) |
|
|
386 | (1) |
|
10.1.8 Data Structure for Model Fitting |
|
|
387 | (1) |
|
10.2 Multilevel Modeling for Continuous Outcome Variables |
|
|
387 | (1) |
|
10.2.1 Research Example and Research Questions |
|
|
387 | (1) |
|
10.2.2 Description of the Data and Sample |
|
|
388 | (1) |
|
10.3 Multilevel Modeling for Continuous Response Variables With R |
|
|
388 | (14) |
|
10.3.1 The lme () Function in the nlme Package |
|
|
388 | (1) |
|
10.3.2 Unconditional Means Model (Model 1: Null Model) |
|
|
389 | (2) |
|
10.3.3 Random-Intercept Model (Model 21 |
|
|
391 | (3) |
|
10.3.4 Random-Coefficient Model: Random-Intercept and Slope Model With Level 1 Variable (Model 3) |
|
|
394 | (2) |
|
10.3.5 Contextual Model With Level 1 and Level 2 Variables (Model 4) |
|
|
396 | (3) |
|
10.3.6 Contextual Model With Cross-Level Interactions (Model 5) |
|
|
399 | (3) |
|
10.4 Multilevel Modeling for Continuous Response Variables With the liner () Function in the lme4 Package |
|
|
402 | (7) |
|
10.4.1 The lmero Function in the lme4 Package |
|
|
402 | (2) |
|
10.4.2 Interpreting the Predicted Values With the ggpredict() Function in the ggeffects Package |
|
|
404 | (5) |
|
10.5 Making Publication-Quality Tables |
|
|
409 | (3) |
|
10.5.1 Presenting the Results Using the stargazer Package |
|
|
409 | (1) |
|
10.5.2 Presenting the Results Using the texreg Package |
|
|
410 | (2) |
|
10.6 Reporting the Results |
|
|
412 | (2) |
|
10.7 Summary of R Commands in This Chapter |
|
|
414 | (5) |
|
|
416 | (1) |
|
|
416 | (3) |
|
11 Multilevel Modeling for Binary Response Variables |
|
|
419 | (40) |
|
Objectives of This Chapter |
|
|
419 | (1) |
|
11.1 Multilevel Modeling for Binary Outcome Variables |
|
|
420 | (2) |
|
11.1.1 Model Specification |
|
|
420 | (1) |
|
11.1.2 Odds and Odds Ratios in Multilevel Logistic Regression Models |
|
|
421 | (1) |
|
11.2 Research Example and Description of the Data and Sample |
|
|
422 | (1) |
|
11.2.1 Research Example and Research Questions |
|
|
422 | (1) |
|
11.2.2 Description of the Data and Sample |
|
|
422 | (1) |
|
11.3 Multilevel Modeling for Binary Response Variables With R |
|
|
423 | (20) |
|
11.3.1 Packages and Functions for Multilevel Modeling for Binary Response Variables in R |
|
|
423 | (1) |
|
11.3.2 TheglmerO Function in the lme4 Package |
|
|
423 | (1) |
|
11.3.3 Unconditional Model or Null Model (Model 11 |
|
|
424 | (2) |
|
11.3.4 Random-Intercept Model (Model 21 |
|
|
426 | (3) |
|
11.3.5 Random-Coefficient Model With a Level-1 Variable (Model 3) |
|
|
429 | (3) |
|
11.3.6 Contextual Model With Level-2 Variables (Model 4) |
|
|
432 | (3) |
|
11.3.7 Contextual Model With Cross-Level Interactions (Model 5) |
|
|
435 | (4) |
|
11.3.8 Interpreting the Predicted Probabilities With the ggpredict() Function in the ggeffects Package |
|
|
439 | (4) |
|
11.4 Multilevel Modeling for Binary Outcome Variables With the clmm() Function in the ordinal Package |
|
|
443 | (4) |
|
11.5 Making Publication-Quality Tables |
|
|
447 | (5) |
|
11.5.1 Presenting the Results Using the stargazer Package |
|
|
447 | (1) |
|
11.5.2 Presenting the Results Using the texreg Package |
|
|
448 | (4) |
|
11.6 Reporting the Results |
|
|
452 | (1) |
|
11.7 Summary of R Commands in This Chapter |
|
|
453 | (6) |
|
|
457 | (1) |
|
|
457 | (2) |
|
12 Multilevel Modeling for Ordinal Response Variables |
|
|
459 | (44) |
|
Objectives of This Chapter |
|
|
459 | (1) |
|
12.1 Multilevel Modeling for Ordinal Response Variables: An Introduction |
|
|
460 | (4) |
|
12.1.1 Model Specification |
|
|
460 | (3) |
|
12.1.2 Odds and Odds Ratios in Multilevel PO Models |
|
|
463 | (1) |
|
12.1.3 Likelihood Ratio Test |
|
|
463 | (1) |
|
12.2 Research Example: Research Problem and Questions |
|
|
464 | (1) |
|
12.2.1 Description of the Data and Sample |
|
|
464 | (1) |
|
12.3 Multilevel Modeling for Ordinal Response Variables With R |
|
|
464 | (22) |
|
12.3.1 Packages and Functions for Multilevel Modeling for Ordinal Response Variables in R |
|
|
464 | (1) |
|
12.3.2 The clmmO Function in the ordinal Package |
|
|
465 | (1) |
|
12.3.3 Unconditional Model or Null Model (Model 1) |
|
|
466 | (2) |
|
12.3.4 Random-Intercept Model (Model 2) |
|
|
468 | (3) |
|
12.3.5 Random-Coefficient Model With a Level 1 Variable (Model 3l |
|
|
471 | (4) |
|
12.3.6 Contextual Model With Both Level 1 and Level 2 Variables (Model 41 |
|
|
475 | (4) |
|
12.3.7 Contextual Model With Cross-Level Interactions (Model 5) |
|
|
479 | (3) |
|
12.3.8 Model Comparisons Using the AIC and the Log-Likelihood Statistics |
|
|
482 | (1) |
|
12.3.9 Interpreting the Predicted Probabilities With the ggpredict() Function in the ggeffects Package |
|
|
483 | (3) |
|
12.4 Multilevel Modeling for Ordinal Response Variables With the mixor() Function in the mixor Package |
|
|
486 | (7) |
|
12.4.1 The mixor () Function in the mixor Package |
|
|
486 | (2) |
|
12.4.2 Multilevel Model for Ordinal Response Variables With Nonadaptive Gauss-Hermite Quadrature Using the mixor () Function |
|
|
488 | (2) |
|
12.4.3 Multilevel Model for Ordinal Response Variables With Adaptive Gauss-Hermite Quadrature Using the mixor () Function |
|
|
490 | (3) |
|
12.5 Making Publication-Quality Tables Using the texreg Package |
|
|
493 | (2) |
|
12.6 Reporting the Results |
|
|
495 | (2) |
|
Results for the Unconditional Model (Model 1) |
|
|
496 | (1) |
|
Results for the Contextual Model Without Cross-Level Interactions (Model 4) |
|
|
496 | (1) |
|
12.7 Summary of R Commands in This Chapter |
|
|
497 | (6) |
|
|
500 | (1) |
|
|
500 | (3) |
|
13 Multilevel Modeling for Count Response Variables |
|
|
503 | (48) |
|
Objectives of This Chapter |
|
|
503 | (1) |
|
13.1 Multilevel Modeling for Count Response Variables |
|
|
504 | (1) |
|
13.1.1 Model Specification |
|
|
504 | (1) |
|
13.1.2 Incidence Rate Ratios in Multilevel Poisson Regression Models |
|
|
505 | (1) |
|
13.2 Research Example and Description of the Data and Sample |
|
|
505 | (2) |
|
13.2.1 Research Example and Research Questions |
|
|
505 | (1) |
|
13.2.2 Description of the Data and Sample |
|
|
506 | (1) |
|
13.3 Multilevel Modeling for Count Response Variables With R |
|
|
507 | (22) |
|
13.3.1 Packages and Functions for Multilevel Modeling for Count Response Variables in R |
|
|
507 | (1) |
|
13.3.2 The glmer() Function in the lme4 Package |
|
|
507 | (1) |
|
13.3.3 Unconditional Model or Null Model (Model 1) |
|
|
508 | (4) |
|
13.3.4 Random-Intercept Model (Model 2) |
|
|
512 | (3) |
|
13.3.5 Random-Coefficient Model With a Level-1 Variable (Model 3) |
|
|
515 | (5) |
|
13.3.6 Contextual Model With Level-2 Variables (Model 4) |
|
|
520 | (4) |
|
13.3.7 Interpreting the Marginal Effects With the margins () Function in the margins Package |
|
|
524 | (1) |
|
13.3.8 Interpreting the Predicted Counts With the ggpredict() Function in the ggeffects Package |
|
|
525 | (4) |
|
13.4 Multilevel Modeling for Count Response Variables With the glmmTMB () Function in the glmmTMB Package |
|
|
529 | (3) |
|
13.5 Multilevel Modeling for Count Response Variables With the glmmPQL () Function in the MASS Package |
|
|
532 | (4) |
|
13.6 Multilevel Negative Binomial Models With the glmmTMB () Function in the glmmTMB Package |
|
|
536 | (2) |
|
13.7 Making Publication-Quality Tables |
|
|
538 | (4) |
|
13.7.1 Presenting the Results Using the stargazer Package |
|
|
538 | (2) |
|
13.7.2 Presenting the Results Using the texreg Package |
|
|
540 | (2) |
|
13.8 Reporting the Results |
|
|
542 | (2) |
|
13.9 Summary of R Commands in This Chapter |
|
|
544 | (7) |
|
|
548 | (1) |
|
|
548 | (3) |
|
14 Multilevel Modeling for Nominal Response Variables |
|
|
551 | (48) |
|
Objectives of This Chapter |
|
|
551 | (1) |
|
14.1 Multilevel Modeling for Nominal Outcome Variables |
|
|
552 | (2) |
|
14.1.1 Model Specification |
|
|
552 | (2) |
|
14.1.2 Odds and Odds Ratios in Multilevel Multinomial Logistic Regression Models |
|
|
554 | (1) |
|
14.2 Research Example and Description of the Data and Sample |
|
|
554 | (2) |
|
14.2.1 Research Example and Research Questions |
|
|
554 | (1) |
|
14.2.2 Description of the Data and Sample |
|
|
555 | (1) |
|
14.3 Multilevel Modeling for Nominal Response Variables With R |
|
|
556 | (13) |
|
14.3.1 Packages and Functions for Multilevel Modeling for Nominal Response Variables in R |
|
|
556 | (1) |
|
14.3.2 The mblogit() Function in the mclogit Package |
|
|
556 | (1) |
|
14.3.3 Unconditional Model or Null Model (Model 1) |
|
|
557 | (3) |
|
14.3.4 Random-Intercept Model (Model 2) |
|
|
560 | (4) |
|
14.3.5 Random-Intercept Model With Level-2 Variables (Model 3) |
|
|
564 | (5) |
|
14.4 Bayesian Multilevel Modeling for Nominal Outcome Variables With the MCMCglmm () Function in the MCMCglmm Package |
|
|
569 | (7) |
|
14.4.1 The MCMCglmm () Function in the MCMCglmm Package: Syntax for Bayesian Multilevel Multinomial Regression Models |
|
|
569 | (2) |
|
14.4.2 Multilevel Multinomial Regression Models With MCMCglmm(): Correlated Random Effects |
|
|
571 | (3) |
|
14.4.3 Multilevel Multinomial Regression Models With MCMCglmm (): Uncorrected Random Effects |
|
|
574 | (2) |
|
14.5 Bayesian Multilevel Modeling for Nominal Outcome Variables With the brm() Function in the brms Package |
|
|
576 | (11) |
|
14.5.1 The brm() Function in the brms Package: Syntax for Bayesian Multilevel Multinomial Regression Models |
|
|
576 | (1) |
|
14.5.2 Multilevel Multinomial Regression Models With brm(): Uncorrected Random Effects |
|
|
577 | (3) |
|
14.5.3 Multilevel Multinomial Regression Models With brm(): Correlated Random Effects |
|
|
580 | (3) |
|
14.5.4 Multilevel Multinomial Regression Models With brm(): Model Diagnostics With plot () |
|
|
583 | (1) |
|
14.5.5 Conditional Effects With conditional effects () |
|
|
584 | (1) |
|
14.5.6 Interpreting the Predicted Probabilities With the ggpredict() Function in the ggeffects Package |
|
|
584 | (3) |
|
14.6 Making Publication-Quality Tables |
|
|
587 | (3) |
|
14.6.1 Presenting the Results Using the texreg Package |
|
|
587 | (3) |
|
14.7 Reporting the Results |
|
|
590 | (2) |
|
14.8 Summary of R Commands in This Chapter |
|
|
592 | (7) |
|
|
596 | (1) |
|
|
596 | (3) |
|
15 Bayesian Generalized Linear Models |
|
|
599 | (48) |
|
Objectives of This Chapter |
|
|
599 | (1) |
|
15.1 Bayesian Generalized Linear Models |
|
|
600 | (4) |
|
15.1.1 Bayesian Inference: A Brief Introduction |
|
|
600 | (1) |
|
|
601 | (1) |
|
15.1.3 Number of Iterations and Warm-Up |
|
|
601 | (1) |
|
15.1.4 Evaluating MCMC Convergence |
|
|
602 | (1) |
|
15.1.5 Point Estimates and Credible Intervals |
|
|
602 | (1) |
|
15.1.6 A Review of Generalized Linear Models |
|
|
603 | (1) |
|
15.2 Bayesian Logistic Regression With R |
|
|
604 | (14) |
|
15.2.1 Description of the Data and Sample |
|
|
604 | (1) |
|
15.2.2 Packages and Functions for Bayesian Logistic Regression With R |
|
|
605 | (1) |
|
15.2.3 The stan glm () Function in the rstanarm Package |
|
|
605 | (9) |
|
15.2.4 The brm() Function in the brms Package: Syntax for Bayesian Logistic Regression Models |
|
|
614 | (4) |
|
15.3 Bayesian Ordinal and Multinomial Logistic Regression With R |
|
|
618 | (5) |
|
15.3.1 Packages and Functions for Bayesian Ordinal Logistic Regression With R |
|
|
618 | (1) |
|
15.3.2 The stan_ glm () Function in the rstanarm Package |
|
|
618 | (2) |
|
15.3.3 The brm() Function in the brms Package: Syntax for Bayesian Ordinal Logistic Regression Models |
|
|
620 | (1) |
|
15.3.4 Packages and Functions for Bayesian Multinomial Logistic Regression With R |
|
|
621 | (1) |
|
15.3.5 The brm() Function in the brms Package: Syntax for Bayesian Multinomial Logistic Regression Models |
|
|
622 | (1) |
|
15.4 Bayesian Poisson Regression With R |
|
|
623 | (7) |
|
15.4.1 Description of the Data and Sample |
|
|
623 | (1) |
|
15.4.2 The Poisson Regression Model With the glm() Function |
|
|
623 | (1) |
|
15.4.3 Packages and Functions for Bayesian Poisson Regression With R |
|
|
624 | (1) |
|
15.4.4 The stan glm () Function in the rstanarm Package |
|
|
624 | (4) |
|
15.4.5 ThebrmO Function in the brms Package: Syntax for Bayesian Poisson Regression Models |
|
|
628 | (2) |
|
15.5 Bayesian Negative Binomial Regression With R |
|
|
630 | (7) |
|
15.5.1 Description of the Data and Sample |
|
|
630 | (1) |
|
15.5.2 The Negative Binomial Regression Model With the glm.nb() Function |
|
|
630 | (1) |
|
15.5.3 Packages and Functions for Bayesian Negative Binomial Regression With R |
|
|
631 | (1) |
|
15.5.4 The stan glm () Function in the rstanarm Package |
|
|
631 | (5) |
|
15.5.5 Thebrm() Function in the brms Package: Syntax for Bayesian Negative Binomial Regression Models |
|
|
636 | (1) |
|
15.6 Making Publication-Quality Tables |
|
|
637 | (2) |
|
15.6.1 Presenting the Results Using the texreg Package |
|
|
637 | (2) |
|
15.7 Reporting the Results |
|
|
639 | (1) |
|
15.8 Summary of R Commands in This Chapter |
|
|
640 | (7) |
|
|
645 | (1) |
|
|
646 | (1) |
|
16 Bayesian Multilevel Modeling of Categorical Response Variables |
|
|
647 | (42) |
|
Objectives of This Chapter |
|
|
647 | (1) |
|
16.1 Bayesian Multilevel Logistic Regression With R |
|
|
648 | (9) |
|
16.1.1 Model Specification |
|
|
648 | (1) |
|
16.1.2 Description of the Data and Sample |
|
|
648 | (1) |
|
16.1.3 Packages and Functions for Bayesian Multilevel Modeling for Binary Response Variables in R |
|
|
649 | (1) |
|
16.1.4 The brm() Function in the brms Package: Syntax for Bayesian Multilevel Logistic Regression Models |
|
|
649 | (4) |
|
16.1.5 The MCMCglmm () Function in the MCMCglmm Package: Syntax for Bayesian Multilevel Logistic Regression Models |
|
|
653 | (4) |
|
16.2 Bayesian Multilevel Ordinal Logistic Regression With R |
|
|
657 | (7) |
|
16.2.1 Model Specification |
|
|
657 | (1) |
|
16.2.2 Description of the Data and Sample |
|
|
658 | (1) |
|
16.2.3 Packages and Functions for Bayesian Multilevel Ordinal Logistic Regression With R |
|
|
658 | (1) |
|
16.2.4 The brm() Function in the brms Package: Syntax for Bayesian Multilevel Ordinal Logistic Regression Models |
|
|
659 | (5) |
|
16.3 Bayesian Multilevel Poisson Regression With R |
|
|
664 | (11) |
|
16.3.1 Model Specification |
|
|
664 | (2) |
|
16.3.2 Description of the Data and Sample |
|
|
666 | (1) |
|
16.3.3 Packages and Functions for Bayesian Multilevel Poisson Regression Models in R |
|
|
666 | (1) |
|
16.3.4 The brm() Function in the brms Package: Syntax for Bayesian Multilevel Poisson Regression Models |
|
|
666 | (4) |
|
16.3.5 The MCMCglmm () Function in the MCMCglmm Package: Syntax for Bayesian Multilevel Poisson Regression Models |
|
|
670 | (5) |
|
16.4 Bayesian Multilevel Negative Binomial Regression With R |
|
|
675 | (4) |
|
16.4.1 The brm() Function in the brms Package: Syntax for Bayesian Multilevel Negative Binomial Regression Models |
|
|
675 | (4) |
|
16.5 Making Publication-Quality Tables |
|
|
679 | (2) |
|
16.5.1 Presenting the Results Using the texreg Package |
|
|
679 | (2) |
|
16.6 Reporting the Results |
|
|
681 | (2) |
|
16.7 Summary of R Commands in This Chapter |
|
|
683 | (6) |
|
|
687 | (1) |
|
|
687 | (2) |
References |
|
689 | (6) |
Index |
|
695 | |