Muutke küpsiste eelistusi

E-raamat: Category Theory Using Haskell: An Introduction with Moggi and Yoneda

  • Formaat - PDF+DRM
  • Hind: 222,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This unique book offers an introductory course on category theory, which became a working language in algebraic geometry and number theory in the 1950s and began to spread to logic and computer science soon after it was created.





Offering excellent use of helpful examples in Haskell, the work covers (among other things) concepts of functors, natural transformations, monads, adjoints, universality, category equivalence, and many others. The main goal is to understand the Yoneda lemma, which can be used to reverse-engineer the implementation of a function.  Later chapters offer more insights into computer science, including computation with output, nondeterministic computation, and continuation passing. 





Topics and features:









Contains rigorous mathematical arguments to support the theory Provides numerous Haskell code-implementing examples Engages with plentiful diagram chasing, with special emphasis on the design patterns for constructing a large diagram out of basic small pieces Offers insights into category theory to quantum computing and the foundation of computing discipline Serves as a preparatory course for monoidal categories and higher categories





The work will be useful to undergraduate students in computer science who have enough background in college mathematics such as linear algebra and basics in Haskell polymorphic functions.  Further, it will appeal to graduate students and researchers in computing disciplines who want to newly acquire serious knowledge of category theory.
1. Catetory, Functor, Natural Transformation.- 2. Equivalence of
categories.-
3. Universality and Limits.- 4. Functors and Limits.-
5. Adjoints.- 6. Monads.- 7. Representable Functors.
Shuichi YUKITA was born in 1954. He received the B.S. degree in physics, M.S. degree in mathematics from the University of Tokyo in 1976 and 1978, respectively. He received the Ph.D. degree in information science from Tohoku University, Sendai, Japan in 2000. He is now with the Faculty of Computer and Information Sciences at Hosei University, Japan.