Muutke küpsiste eelistusi

E-raamat: Causal Inference

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 35,36 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Causality is central to the understanding and use of data; without an understanding of cause and effect relationships, we cannot use data to answer important questions in medicine and many other fields"--

A nontechnical guide to the basic ideas of modern causal inference, with illustrations from health, the economy, and public policy.

Which of two antiviral drugs does the most to save people infected with Ebola virus? Does a daily glass of wine prolong or shorten life? Does winning the lottery make you more or less likely to go bankrupt? How do you identify genes that cause disease? Do unions raise wages? Do some antibiotics have lethal side effects? Does the Earned Income Tax Credit help people enter the workforce?
 
Causal Inference provides a brief and nontechnical introduction to randomized experiments, propensity scores, natural experiments, instrumental variables, sensitivity analysis, and quasi-experimental devices. Ideas are illustrated with examples from medicine, epidemiology, economics and business, the social sciences, and public policy.
Series Foreword ix
List of Examples
xi
List of Methodological Topics
xiii
1 The Effects Caused by Treatments
1(20)
2 Randomized Experiments
21(26)
3 Observational Studies: The Problem
47(20)
4 Adjustments for Measured Covariates
67(18)
5 Sensitivity to Unmeasured Covariates
85(18)
6 Quasi-Experimental Devices in the Design of Observational Studies
103(14)
7 Natural Experiments, Discontinuities, and Instruments
117(42)
8 Replication, Resolution, and Evidence Factors
159(1)
9 Uncertainty and Complexity in Causal Inference
159(16)
Postscript: Key Ideas,
Chapter by
Chapter
175(4)
Glossary 179(2)
Notes 181(8)
Bibliography 189(8)
Further Reading 197(2)
Index 199
Paul R. Rosenbaum is the Robert G. Putzel Professor Emeritus of Statistics and Data Science at the Wharton School of the University of Pennsylvania. He is the author of Observation and Experiment: An Introduction to Causal Inference, Design of Observational Studies, Observational Studies, and Replication and Evidence Factors in Observational Studies.