Muutke küpsiste eelistusi

E-raamat: Cavitation in Biomedicine: Principles and Techniques

Edited by , Edited by , Edited by
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Aug-2015
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789401772556
  • Formaat - PDF+DRM
  • Hind: 221,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 29-Aug-2015
  • Kirjastus: Springer
  • Keel: eng
  • ISBN-13: 9789401772556

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The book discusses a systematic understanding of the engineering principles and techniques of cavitation in biomedicine based on its physics and mechanism. The study of cavitation in biomedicine is interdisciplinary, and covers areas of interest from physics, engineering to the biological and medical sciences. This book introduces the fundamentals of cavitation, describes cavitation characterization under free field conditions and presents cavitation enhanced thermal and mechanical effects and their applications. It is intended as a combination of reference book for graduate students, and a monograph for scientists and engineers who work with cavitation in biomedicine. It will help students gain a broad and solid foundation in the field. The aim is to create a bridge for the different disciplines involved, and to promote the integration of cross-curricular interests, thus encouraging innovations in the scientific research and engineering application. Dr. Mingxi Wan is a professor at Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiao Tong University, Xi’an, Shaanxi, China Dr. Yi Feng works at Department of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiao Tong University, Xi’an, Shaanxi, China Dr. Gail ter Haar is a professor at The Institute of Cancer Research, Sutton, Surry, UK.
1 Fundamentals of Cavitation
1(46)
1.1 Introduction
1(1)
1.2 Process and Thresholds of Cavitation
2(8)
1.2.1 Nucleation, Growth, Oscillation, Collapse, and Dissolution
2(1)
1.2.2 Nucleation and Collapse Thresholds
3(7)
1.3 Cavitation Nuclei
10(8)
1.3.1 Microcavity
10(2)
1.3.2 Encapsulated Bubble
12(2)
1.3.3 Phase-Shift Nanodroplet
14(3)
1.3.4 Other Micro-/Nanoscale Particles
17(1)
1.4 Tensile and Energetic Cavitation
18(1)
1.5 Cavitation Bubble Dynamics
19(23)
1.5.1 Free Gas Bubble Dynamics in a Free Field
19(2)
1.5.2 Encapsulated Bubble Dynamics in a Free Field
21(3)
1.5.3 Bubble Dynamics Near an Interface
24(5)
1.5.4 Bubble Dynamics in Constrained Vessel
29(6)
1.5.5 Bubble Dynamics in Soft Tissue
35(7)
1.6 Summary
42(5)
References
43(4)
2 Cavitation Mapping
47(104)
2.1 Introduction
47(2)
2.2 Cavitation Mapping by High-Speed Photography
49(9)
2.2.1 Single-Bubble Cavitation
50(2)
2.2.2 Multiple-Bubble Cavitation
52(3)
2.2.3 Cavitation in Microvessel
55(3)
2.3 Cavitation Mapping by Sonoluminescence and Sonochemiluminescence
58(88)
2.3.1 Mechanisms of SL and SCL
59(6)
2.3.2 Free Field
65(81)
3.10 Considering Vapor Condensation for PNE-S/PNE-DS
146(2)
3.10.1 A Corrected Approach on the Wide-Beam ACD Method
146(2)
3.10.2 The Effect of Vapor Condensation in the Bubble Size Estimation
148(1)
3.11 Summary
148(3)
References
149(2)
4 Cavitation-Enhanced Thermal Effects and Applications
151(56)
4.1 Introduction
151(2)
4.2 Principles of Cavitation-Enhanced Thermal Effects
153(6)
4.2.1 Heating Due to Primary Absorption of an Ultrasound Field
153(1)
4.2.2 Viscous Damping of Cavitation Bubble
153(2)
4.2.3 Acoustic Energy Radiation from a Cavitation Bubble
155(3)
4.2.4 Increased Local Acoustic Absorption by Cavitation Bubble
158(1)
4.2.5 Bioheat Transfer Equation
159(1)
4.3 Simultaneously Measuring Cavitation Activity and Temperature Rise
159(5)
4.3.1 Cavitation and Temperature Rise in Phantoms
160(1)
4.3.2 Cavitation and Temperature Rise in Tissues
161(3)
4.4 High-Intensity Focused Ultrasound Ablation
164(15)
4.4.1 In Vitro Methods of Evaluating Cavitation-Enhanced Thermal Effects
165(6)
4.4.2 In Vivo Applications of Cavitation-Enhanced Thermal Effects
171(6)
4.4.3 Preclinical Evaluation of Cavitation-Enhanced Thermal Effects
177(2)
4.5 Thermal Effects of Flowing Microbubbles
179(12)
4.5.1 Effects of Blood Flow on Heating
179(2)
4.5.2 Cavitation-Enhanced Heating by Flowing Microbubbles
181(10)
4.6 Enhancing Acoustic Cavitation with Multi-frequency Ultrasound
191(5)
4.7 Boiling Histotripsy
196(2)
4.8 Microscale Cavitation Heating and Nanoscale Thermometry
198(1)
4.9 Summary
199(8)
References
200(7)
5 Cavitation-Enhanced Mechanical Effects and Applications
207(58)
5.1 Introduction
207(1)
5.2 Acoustic Microstreaming and Stress Field Created by Oscillating Bubble
208(14)
5.2.1 Theoretical Calculation of Cavitation Microstreaming
209(5)
5.2.2 Experimental Observation of Cavitation Microstreaming
214(5)
5.2.3 Shear Stress Induced by Microstreaming
219(3)
5.3 Jet Formation and Shock Wave Emission During Ultrasound-Induced Bubble Collapse
222(15)
5.3.1 High-Speed Observation of Liquid Jets and Shock Wave Emission
222(12)
5.3.2 Theoretical Modeling of Bubble Dynamics
234(3)
5.4 Applications
237(21)
5.4.1 Lithotripsy
237(5)
5.4.2 Histotripsy
242(3)
5.4.3 Sonothrombolysis
245(4)
5.4.4 Vascular Applications
249(4)
5.4.5 Ultrasound-Enhanced Delivery of Drugs and Genetic Materials
253(5)
5.5 Summary
258(7)
References
259(6)
6 Cavitation Control and Applications
265(66)
6.1 Introduction
265(2)
6.2 Effect of Temperature on Cavitation
267(11)
6.2.1 Effect of the Liquid Temperature
267(4)
6.2.2 Temperature Dependence of PSNE-Induced Cavitation
271(7)
6.3 Effect of Pressure on Cavitation
278(8)
6.3.1 Effect of Static Pressure
278(2)
6.3.2 Effect of Overpressure on Cavitation Suppression
280(6)
6.4 Effect of Frequency on Cavitation
286(4)
6.4.1 Frequency Dependence of Ultrasonic Cavitation
286(1)
6.4.2 Enhancement of Cavitation by Multiple Frequencies
287(3)
6.5 Radiation Force-Constrained Cavitation
290(5)
6.6 Cavitation-Controlled Tissue Histotripsy
295(15)
6.6.1 The Principle
295(1)
6.6.2 Effect of Pulse Length
296(10)
6.6.3 Effect of Duty Cycle
306(3)
6.6.4 Histotripsy Monitoring by Imaging Feedback
309(1)
6.7 Cavitation Dosage Control During Ablation
310(9)
6.7.1 Effect of Cavitation on Ablation Process
310(1)
6.7.2 Methods for Controlling Cavitation During Ablation
310(9)
6.8 Drug Delivery Controlled by Low-Intensity Focused Ultrasound
319(7)
6.8.1 Composite Sequence and Focal Pattern of Low-Intensity Focused Ultrasound
320(2)
6.8.2 Spatially Controlled Microbubble Destruction
322(1)
6.8.3 Temporally Controlled Microbubble Destruction
323(3)
6.9 Summary
326(5)
References
327(4)
7 Cavitation Imaging in Tissues
331(70)
7.1 Introduction
331(2)
7.2 Active Cavitation Imaging
333(14)
7.2.1 Conventional ACI and Differential Imaging Methods
333(4)
7.2.2 Ultrafast ACI
337(6)
7.2.3 Typical UACI Results for HIFU Therapy
343(4)
7.3 Second-Harmonic and Subharmonic Cavitation Imaging
347(5)
7.4 Cavitation Imaging with the Bubble Wavelet Transform Technique
352(6)
7.4.1 CBWT Imaging Method
353(4)
7.4.2 CBWT Imaging Method with the Pulse Inversion
357(1)
7.5 Bubble Doppler Technique for Cavitation Imaging
358(3)
7.6 Passive Cavitation Imaging
361(9)
7.6.1 Time-Domain PCI
361(2)
7.6.2 Fourier Domain PCI
363(2)
7.6.3 Techniques for Improving the Resolution of PCI
365(5)
7.7 Cavitation Imaging Based on Super-Resolution Reconstruction
370(6)
7.7.1 Principles of Super-Resolution Reconstruction
370(2)
7.7.2 POCS Reconstruction Approach
372(4)
7.8 3D Cavitation Imaging
376(15)
7.8.1 Brief Description
376(1)
7.8.2 3D Ultrafast Cavitation Imaging Based on Adaptive Beamforming
377(2)
7.8.3 Compressed Sensing and Sparse Modeling Method
379(5)
7.8.4 Sparse Array Design
384(7)
7.9 Magnetic Resonance Cavitation Imaging
391(2)
7.10 Summary
393(8)
References
395(6)
8 Laser-Induced Cavitation and Photoacoustic Cavitation
401(56)
8.1 Introduction
401(1)
8.2 Laser-Induced Cavitation
402(29)
8.2.1 Brief Description
402(3)
8.2.2 Lie Modeling
405(8)
8.2.3 Lie in Water
413(6)
8.2.4 Lie in a Phase-Shift Liquid
419(4)
8.2.5 Lie of Droplets
423(1)
8.2.6 Lie in a Cell
424(1)
8.2.7 Plasmonic Nanoparticle-Generated Photothermal Bubbles
425(6)
8.3 Photoacoustic Cavitation
431(21)
8.3.1 Definition
431(1)
8.3.2 PAC Modeling
432(6)
8.3.3 Experimental System
438(1)
8.3.4 PAC in Water
439(1)
8.3.5 PAC in a Phase-Shift Liquid
440(2)
8.3.6 PAC of Nanodroplets
442(2)
8.3.7 PAC with Nanoparticles
444(8)
8.4 Summary
452(5)
References
452(5)
9 Cavitation Mechanobiology and Applications
457
9.1 Introduction
457(10)
9.1.1 Bioeffects of Ultrasound and Cavitation
457(2)
9.1.2 Cavitation Mechanobiology
459(2)
9.1.3 Physical Mechanisms
461(2)
9.1.4 Chemical Mechanisms
463(1)
9.1.5 Basic Applications
464(3)
9.2 Mechanical Effects of Cavitation on Tissues
467(8)
9.2.1 Thrombolysis and Thrombolytic Therapy
467(1)
9.2.2 Cavitation-Mediated Macromolecule Delivery
468(1)
9.2.3 Gene Therapy
469(3)
9.2.4 Anticancer Therapy
472(1)
9.2.5 BBB and Neurodegenerative Disorder Therapy
473(1)
9.2.6 Ultrasound Tissue Erosion and Histotripsy
474(1)
9.3 Cavitation and Cells
475(16)
9.3.1 Sonoporation
475(1)
9.3.2 Cell Viability
476(2)
9.3.3 Cell Death
478(4)
9.3.4 Subcellular Effects
482(3)
9.3.5 Molecular Mechanisms
485(4)
9.3.6 Sonodynamic Therapy
489(2)
9.4 Effects of Cavitation on Macromolecules and Small Molecules
491(3)
9.4.1 Effects of Cavitation on Small Molecules
492(1)
9.4.2 Effects of Cavitation on Macromolecules
493(1)
9.5 Summary
494
References
495