Muutke küpsiste eelistusi

E-raamat: Cavitation: Bubble Trackers

  • Formaat: 416 pages
  • Ilmumisaeg: 08-Oct-2021
  • Kirjastus: A A Balkema Publishers
  • Keel: eng
  • ISBN-13: 9781351462174
  • Formaat - PDF+DRM
  • Hind: 64,99 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 416 pages
  • Ilmumisaeg: 08-Oct-2021
  • Kirjastus: A A Balkema Publishers
  • Keel: eng
  • ISBN-13: 9781351462174

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Cavitation onset is the main limitation to the satisfactory performance of hydraulic components. The first chapters describe the mechanisms of cavitation, which is the vaporization of liquids due to high velocities or pressure fluctuations. The classic scaling rules are explained, including the parameters and the NPSH. Cavitation noise, measuring techniques, and the effects of cavitation on the performances of rotating machinery are also covered. Examples of useful utilization of cavitation conclude the book. Originally published as La Cavitation traquers de bulles by +ditions Hermes, Paris in 1994. Annotation c. by Book News, Inc., Portland, Or.
Foreword to the English Edition v
Foreword to the French Edition vii
Acknowledgements ix
List of Symbols
xi
Introduction xxi
Phenomenon of Cavitation
1(11)
Introduction
1(1)
Vaporisation
1(3)
Cavitation: Some Examples
4(5)
Effects of Cavitation
9(1)
Classical Methods of Approach: Experimentation
10(2)
Parameter σ of Cavitation
12(21)
Definition---Physical Significance
12(5)
Parameter σ and Cavitation
17(3)
Where to Define σ of Cavitation?
20(3)
σ: Components and Machines
23(5)
Compatibility of σ with Other Parameters of Similitude
28(5)
Types of Cavitation
33(11)
Introduction
33(1)
Travelling Bubble Cavitation
33(3)
Cavity or Pocket Cavitation
36(1)
Influence of Surface Roughness
37(1)
Mixing Layer Cavitation
38(2)
Trailing or Tip Vortex Cavitation
40(1)
Gap Cavitation
41(1)
Other Types of Cavitation
42(2)
Single Bubble Life
44(21)
Introduction
44(1)
Tensile Strength of Fluids
44(14)
Nuclei
58(1)
Bubble Dynamics: Rayleigh-Plesset Equation
58(7)
Cavitation of a Hydrofoil
65(11)
Various Types
65(1)
Universal Behaviour of a Hydrofoil
65(4)
Hydrofoil at Small Angle of Attack
69(2)
Angle of Attack Corresponding to Transition
71(1)
Moderate Angle of Attack
72(2)
Three-Dimensional Hydrofoil: Vortex Cavitation
74(2)
Travelling Bubble Cavitation
76(39)
Phenomenon: Example of Hydrofoil Boat
76(1)
Spectrum of Nuclei
77(2)
Inception of Travelling Bubble Cavitation
79(9)
Developed Travelling Bubble Cavitation
88(6)
Experimental Verification
94(18)
Recommendations
112(3)
Fixed or Attached Cavitation
115(25)
Introduction
115(1)
Inception of Cavitation
116(12)
Developed Cavitation
128(2)
Supercavitation
130(10)
Other Types of Cavitation
140(37)
Mixing Layer Cavitation
140(14)
Vortex Cavitation
154(11)
Gap Cavitation
165(4)
Roughness
169(8)
Cavitation Noise
177(34)
Introduction
177(2)
Noise Produced by a single Bubble
179(12)
Similitude and Experimental Results
191(8)
Some Results
199(4)
Some Remedies for the Noise Problem
203(8)
Thermodynamic Attenuation of Cavitation
211(33)
Introduction
211(2)
Thermodynamic Attenuation and Bubble Cavitation
213(10)
Thermodynamic Attenuation and Attached Cavitation
223(11)
Tests, Similitude
234(7)
Noise and Erosion in Cryogenic Fluids
241(1)
Some Experimental Results
241(1)
Conclusion
242(2)
Cavitation Erosion
244(47)
Introduction
244(1)
Relevant Components
244(2)
Characteristics of the Phenomenon
246(2)
Standard Methods
248(7)
Similitude
255(18)
Principles of a Prediction Method
273(4)
Histograms of Impacts
277(10)
Metallurgical Models
287(1)
Comparison of Materials
288(2)
Conclusion
290(1)
Cavitation in Rotary Machines
291(20)
Pumps
291(11)
Turbines
302(1)
Propellers
303(7)
Recommendations
310(1)
Test Facilities
311(24)
General Principles
311(3)
First Cavitation Tunnel
314(2)
Small Research Tunnels
316(3)
Large Modern Hydrodynamic Tunnels
319(5)
Pump Test Loops
324(1)
Turbine Test loops
325(2)
Test Facilities for Sodium and Mercury
327(2)
`Thermodynamic' Test Facilities
329(2)
Towing Tank in Vacuum: Vacutank
331(1)
Special Test Facilities
332(3)
Instrumentation
335(28)
Introduction
335(1)
Optical Methods
335(3)
Acoustic Techniques
338(1)
Measurement of Velocity
339(2)
Nucleation Control
341(22)
Applications of Cavitation
363(8)
Introduction
363(1)
Restricting Flow Rate of Fluids
363(3)
Assistance in Drilling for Oil
366(1)
Microbubble Generation
367(1)
Other Applications
368(3)
Some Physical Properties of Fluids 371(4)
References 375(20)
Index 395


Yves Lecoffre