Muutke küpsiste eelistusi

E-raamat: Cell Culture and Upstream Processing

Edited by (University of Manitoba, Canada)
  • Formaat: 201 pages
  • Ilmumisaeg: 30-Jun-2007
  • Kirjastus: Taylor & Francis Ltd
  • Keel: eng
  • ISBN-13: 9780203967232
  • Formaat - PDF+DRM
  • Hind: 81,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 201 pages
  • Ilmumisaeg: 30-Jun-2007
  • Kirjastus: Taylor & Francis Ltd
  • Keel: eng
  • ISBN-13: 9780203967232

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Drawn from those presented at highly acclaimed conferences on animal cell technology and protein expression, these papers describe to professionals and students how to improve yields and optimize the cell culture production process for pharmaceuticals by focusing on safety, quality, economics, operability and productivity issues. The nine papers cover mammalian cell culture in cell line development and culture strategies that improve yields, the use of DNA insulator elements and scaffold/matrix-attached regions for enhanced recombinant protein expression, targeted gene insertion to enhance production from cell lines, recombinant human IgG production from myeloma and Chinese hamster ovary cells, cell culture media development with customized components and supplements that are animal-free, post-translation modification of recombinant antibody proteins, metabolic engineering to control glycosylation, humanization of N-glycosylation pathways in yeast, and a matter of perspective on perfusion of fed-batch processing. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)
Contributors ix
Abbreviations xi
Preface xiii
Overview on mammalian cell culture
Cell line development and culture strategies: future prospects to improve yields
3(16)
Michael Butler
Introduction
3(2)
Cell line transfection and selection
5(1)
Increase in efficiency in selecting a producer cell line
6(2)
Stability of gene expression
8(1)
Optimization of the fermentation process
9(2)
Apoptosis
11(1)
Bioreactors
11(1)
The capacity crunch
12(7)
Acknowledgment
13(1)
References
13(6)
The producer cell line
Use of DNA insulator elements and scaffold/matrix-attached regions for enhanced recombinant protein expression
19(18)
Helen Kim
Introduction
19(1)
The position effect
20(1)
Use of insulators and S/MARs can reduce the effects of heterochromatin on transgene expression
20(2)
DNA insulator elements
22(1)
The scaffold/matrix-attachment regions
23(2)
Binding proteins for DNA insulators and S/MARs
25(1)
DNA insulators or S/MARs can be incorporated into expression vectors
26(4)
DNA insulators and S/MARs act in a context-dependent manner
30(1)
Conclusion
31(6)
Acknowledgements
32(1)
References
32(5)
Targeted gene insertion to enhance protein production from cell lines
37(20)
Trevor N. Collingwood
Fyodor D. Urnov
Introduction
37(2)
Identification of genomic `hot spot' loci
39(1)
Recombinase-mediated site-specific gene insertion
39(5)
Cre, Flp, and φC31 recombinase systems
40(1)
Recombinase-mediated cassette exchange
40(3)
Gene insertion at native `pseudo' recombinase sites
43(1)
Modification of recombinases and their target sites
43(1)
Emerging technologies for targeted gene insertion
44(6)
Homing endonucleases in HDR-mediated targeted gene insertion
46(1)
Targeted gene insertion into native loci by zinc finger, nucleasemediated, high-frequency, homologous recombination
47(3)
Perspective
50(7)
References
52(5)
Recombinant human IgG production from myeloma and Chinese hamster ovary cells
57(24)
Ray Field
Introduction
57(1)
The need for recombinant human antibodies
57(1)
Recombinant antibodies
58(1)
Decoupling antibody isolation and production
58(1)
Choice of host cells
59(1)
Chinese hamster ovary cells
60(1)
Rodent myeloma cells
60(1)
The glutamine synthetase system
60(1)
Cell line stability
61(1)
Bioreactor process strategies
62(1)
IgG supply during antibody development
62(1)
Strategies for cell line engineering during clinical development
63(1)
Cost of goods and intellectual property
64(1)
Recombinant human IgG production from myeloma and CHO cells
64(10)
Creation of CHO and NSO cell lines expressing IgG
64(1)
Cell expansion, subculture and production reactor experiments
65(1)
Northern and western blotting
65(1)
Comparison of results of transfections from GS-NSO and GS-CHO
65(1)
Dilution cloning and analysis of clonal heterogeneity
66(1)
Analysis of instability of a GS-NSO cell line
67(1)
Output of transfections of GS-NSO and GS-CHO
68(1)
IgG production stability of candidate GS-NSO clones
69(1)
IgG production stability of GS-CHO transfectants
70(1)
Fed-batch bioreactor process for GS-NSO and GS-CHO
71(1)
Analysis of IgG quality produced from GS-CHO and GS-NSO bioreactor processes
71(3)
Comparative yield of different human IgGs produced from CHO or NSO cells
74(1)
Summary
74(7)
Acknowledgments
76(1)
References
76(5)
Media development
Cell culture media development: customization of animal origin-free components and supplements
81(22)
Stephen Gorfien
Introduction
81(1)
Types of cell culture media
82(1)
Components of animal origin
83(12)
Segregate
85(2)
Mitigate
87(1)
Replace
88(7)
Summary and considerations for the future
95(8)
Acknowledgments
98(1)
References
98(5)
Glycosylated proteins
Post-translational modification of recombinant antibody proteins
103(28)
Roy Jeffries
Introduction
103(1)
Common post-translational modifications
104(1)
Recombinant antibody therapeutics
105(1)
Structural and functional characteristics of human antibodies
106(1)
The human IgG subclasses: Options for antibody therapeutics
106(2)
The structure of human IgG antibodies
108(2)
IgG-Fc glycosylation
110(2)
IgG-Fab glycosylation
112(3)
Cell engineering to influence glycoform profiles
115(1)
IgG glycoforms and Fc effector functions
116(2)
Glycosylation engineering
118(1)
Pharmacokinetics and placental transport
118(1)
Antibody therapeutics of the IgA class
119(1)
Non-antibody recombinant (glyco)protein therapeutics, `biosimilar' and `follow-on' biologics
120(3)
Erythropoietin
121(1)
Tissue-type plasminogen activator
122(1)
Granulocyte-macrophage colony stimulating factor (GM-CSF)
122(1)
Granulocyte-colony stimulating factor
122(1)
Activated protein C
122(1)
Conclusions
123(8)
References
123(8)
Metabolic engineering to control glycosylation
131(18)
Amy Shen
Domingos Ng
John Joly
Brad Snedecor
Yanmei Lu
Gloria Meng
Gerald Nakamura
Lynne Krummen
Introduction
131(1)
Manipulation of fucose content using RNAi technology in CHO cells
132(11)
Metabolic engineering of fucose content with an existing antibody production line
132(4)
Metabolic engineering of fucose content with simultaneous new stable cell line generation
136(4)
Effect of fucosylation levels on FcyR binding
140(3)
Effects of fucose content on antibody-dependent cellular cytotoxicity
143(1)
Discussion
143(6)
Acknowledgments
146(1)
References
146(3)
An alternative approach: Humanization of N-glycosylation pathways in yeast
149(24)
Stefan Wildt
Thomas Potgieter
Introduction
149(3)
Yeast as host for recombinant protein expression
152(1)
N-linked glycosylation overview: Fungal versus mammalian
152(2)
A brief history of efforts to humanize N-linked glycosylation in fungal systems
154(1)
Sequential targeting of glycosylation enzymes is a key factor
155(2)
Replication of human-like glycosylation in the methylotrophic yeast Pichia pastoris
157(1)
A library of α-1, 2 mannosidases
157(1)
Transfer of N-acetylglucosamine
158(1)
Two independent approaches towards complex N-glycans: How to eliminate more mannoses
159(2)
Some metabolic engineering: Transfer of galactose
161(1)
More metabolic engineering: Sialic acid transfer. The final step
162(1)
Glyco-engineered yeast as a host for production of therapeutic glycoproteins
162(2)
N-linked glycans and pharmacokinetics of therapeutic glycoproteins
164(1)
N-glycans and their role in tissue targeting of glycoproteins
164(1)
N-glycans can modulate the biological activity of therapeutic glycoproteins
165(1)
Control of N-glycosylation offers advantages
165(1)
Conclusions
166(7)
References
166(7)
The Bioprocess
Perfusion or fed-batch? A matter of perspective
173(10)
Marco Cacciuttolo
Introduction
173(2)
Factors affecting the decision on choosing the manufacturing technology
175(5)
Technology expertise
175(4)
Facility design and scope (product dedicated versus multi-product)
179(1)
Impact of switching from perfusion to fed-batch
180(1)
Personnel requirements
180(1)
Liquid handling
181(1)
Equipment
182(1)
Manufacturing space
182(1)
Decrease in cycle time
182(7)
Direct costs of manufacturing
182(7)
Productivity and morale
183(1)
Conclusions
183(4)
Acknowledgments
184(1)
References
184


Michael Butler-Associate Dean of Science; Professor of Cell Technology, Department of Microbiology, School of Science, University of Manitoba, Winnipeg, Canada