Muutke küpsiste eelistusi

E-raamat: Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Examples, and Analysis

  • Formaat - EPUB+DRM
  • Hind: 66,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This text explores the use of cellular automata in modeling pattern formation in biological systems.  It describes several mathematical modeling approaches utilizing automata that can be used to analyze the dynamics of interacting cell systems and demonstrates how these models are applied beyond mere simulation.  New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field.The book begins with a historical sketch of the mathematical concepts of static and dynamic space-time, showing how they have influenced the understanding of pattern formation, followed by a brief introduction to pattern-forming principles in biology.  Mathematical modeling concepts for analyzing pattern formation are considered next, including PDEs, coupled-map lattices, many particle systems, and cellular automata, with the latter being considered in further detail in a subsequent chapter.  Cellular automaton models for different types of cellular processes and interactions are discussed in the chapters that follow, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media.  In the final chapter, the authors critically discuss possibilities and limitations of the automaton approach in modeling various cell biological applications, along with future directions.  Suggestions for research projects are provided throughout the book to encourage additional engagement with the material.  Additionally, readers can use the accompanying website to perform their own simulations on some of the models covered in the text.With its accessible presentation and interdisciplinary approach, is suitable for graduate and advanced undergraduate students in mathematical biology, biological modeling, and biological computing.  It will also be a valuable resource for researchers and practitioners in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science. PRAISE FOR THE FIRST EDITION“The book is a good starting point for scientists and students ( who) would like to move into the field of studying effects of spatial pattern formation in biology. The introductory chapters are fun reading.... The introduction to the lattice-gas method is thorough and sound, and the array of applications of the method to systems of biological pattern formation is impressive and inspiring.— Mathematical Biosciences“The effort the authors have invested in mathematically describing the CA and its interactions will certainly be very welcome to math students. …The book remains an ideal guide for someone with a mathematical or physical background to start exploring biological modelling. Importantly, it will also serve as an excellent guide for experienced modellers to innovate and improve their methodologies for analysing simulation results.” — Mathematical Reviews

Arvustused

In this book the authors concentrate on modelling biological pattern formation using cellular automata . The book would be useful to someone with a mathematical background interested in modelling spatio-temporal dynamics of biological cells at this level of description. (Carlo Laing, zbMATH 1403.37001, 2019)


Andreas Deutsch, PhD, Department for Innovative Methods of Computing, Center for Information Services and High Performance Computing, Technische Universität Dresden. Sabine Dormann, PhD, Universität Osnabrück