Muutke küpsiste eelistusi

E-raamat: Cellular Image Classification

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 17-Nov-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319476292
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 17-Nov-2016
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319476292

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces new techniques for cellular image feature extraction, pattern recognition and classification. The authors use the antinuclear antibodies (ANAs) in patient serum as the subjects and the Indirect Immunofluorescence (IIF) technique as the imaging protocol to illustrate the applications of the described methods. Throughout the book, the authors provide evaluations for the proposed methods on two publicly available human epithelial (HEp-2) cell datasets: ICPR2012 dataset from the ICPR"12 HEp-2 cell classification contest and ICIP2013 training dataset from the ICIP"13 Competition on cells classification by fluorescent image analysis. First, the reading of imaging results is significantly influenced by one"s qualification and reading systems, causing high intra- and inter-laboratory variance. The authors present a low-order LP21 fiber mode for optical single cell manipulation and imaging staining patterns of HEp-2 cells. A focused four-lobed mode distribution is sta

ble and effective in optical tweezer applications, including selective cell pick-up, pairing, grouping or separation, as well as rotation of cell dimers and clusters. Both translational dragging force and rotational torque in the experiments are in good accordance with the theoretical model. With a simple all-fiber configuration, and low peak irradiation to targeted cells, instrumentation of this optical chuck technology will provide a powerful tool in the ANA-IIF laboratories. Chapters focus on the optical, mechanical and computing systems for the clinical trials. Computer programs for GUI and control of the optical tweezers are also discussed. to more discriminative local distance vector by searching for local neighbors of the local feature in the class-specific manifolds. Encoding and pooling the local distance vectors leads to salient image representation. Combined with the traditional coding methods, this method achieves higher classification accuracy. Then, a rotation inva

riant textural feature of Pairwise Local Ternary Patterns with Spatial Rotation Invariant (PLTP-SRI) is examined. It is invariant to image rotations, meanwhile it is robust to noise and weak illumination. By adding spatial pyramid structure, this method captures spatial layout information. While the proposed PLTP-SRI feature extracts local feature, the BoW framework builds a global image representation. It is reasonable to combine them together to achieve impressive classification performance, as the combined feature takes the advantages of the two kinds of features in different aspects. Finally, the authors design a Co-occurrence Differential Texton (CoDT) feature to represent the local image patches of HEp-2 cells. The CoDT feature reduces the information loss by ignoring the quantization while it utilizes the spatial relations among the differential micro-texton feature. Thus it can increase the discriminative power. A generative model adaptively characterizes the CoDT feature

space of the training data. Furthermore, exploiting a discriminant representation allows for HEp-2 cell images based on the adaptive partitioned feature space. Therefore, the resulting representation is adapted to the classification task. By cooperating with linear Support Vector Machine (SVM) classifier, this framework can exploit the advantages of both generative and discriminative approaches for cellular image classification. The book is written for those researchers who would like to develop their own programs, and the working MatLab codes are included for all the important algorithms presented. It can also be used as a reference book for graduate students and senior undergraduates in the area of biomedical imaging, image feature extraction, pattern recognition and classification. Academics, researchers, and professional will find this to be an exceptional resou

Introduction.- Fundamentals.- Optical Systems for Cellular Imaging.- Image Representation with Bag-of-Words.- Image Coding.- Encoding Image Features.- Defining Feature Space for Image Classification.- Conclusions and Perspectives.
1 Introduction
1(14)
1.1 Background
1(5)
1.1.1 Clinical Problems: A Case Study on Autoimmune Diseases
1(2)
1.1.2 Cellular Imaging: A Case Study on Indirect Immunofluorescence
3(3)
1.2 Computer-Aided Diagnosis
6(2)
1.3 Experimental Datasets in the Book
8(2)
1.3.1 The ICPR2012 Dataset
8(2)
1.3.2 The ICIP2013 Training Dataset
10(1)
1.4 Structure of the
Chapters
10(5)
References
12(3)
2 Fundamentals
15(30)
2.1 Optical Systems for Cellular Imaging
15(16)
2.1.1 Laser Scanning Confocal Microscope
16(4)
2.1.2 Multi-photon Fluorescence Imaging
20(2)
2.1.3 Total Internal Reflection Fluorescence Microscope
22(3)
2.1.4 Near-Field Scanning Optical Microscopy Imaging Technology
25(4)
2.1.5 Optical Coherence Tomography Technology
29(2)
2.2 Feature Extraction
31(8)
2.2.1 Low-Level Features
31(7)
2.2.2 Mid-Level Features
38(1)
2.3 Classification
39(6)
2.3.1 Support Vector Machine
39(1)
2.3.2 Nearest Neighbor Classifier
40(1)
References
41(4)
3 Optical Systems for Cellular Imaging
45(36)
3.1 Introduction
46(1)
3.2 Optical Tweezer
47(4)
3.2.1 Introduction to Optical Tweezers
47(1)
3.2.2 Gradient and Scattering Force of Optical Tweezers
48(1)
3.2.3 Three-Dimensional Optical Trap
49(2)
3.3 Low-Order Fiber Mode LP21
51(10)
3.3.1 Fiber Mode Coupling Theory
51(2)
3.3.2 Analysis of Field Distribution in Optical Fiber
53(2)
3.3.3 Solution to LP2] Mode
55(1)
3.3.4 Selective Excitation of LP21 Mode
56(2)
3.3.5 The Twisting and Bending Characteristics of LP21 Mode
58(2)
3.3.6 Why LP21 Mode?
60(1)
3.4 Optical Tweezer Using Focused LP21 Mode
61(7)
3.4.1 Fiber Axicons
61(5)
3.4.2 Cell Manipulation
66(2)
3.5 Modeling of Optical Trapping Force
68(9)
3.5.1 Force Analysis of Mie Particles in Optical Trap
69(3)
3.5.2 Gaussian Beam
72(1)
3.5.3 Simulation of Light Force on Mie Particle
73(4)
3.6 Summary
77(4)
References
78(3)
4 Image Representation with Bag-of-Words
81(8)
4.1 Introduction
81(2)
4.2 Coding
83(3)
4.2.1 Vector Quantization
84(1)
4.2.2 Soft Assignment Coding
84(1)
4.2.3 Locality-Constrained Linear Coding
85(1)
4.3 Pooling
86(1)
4.4 Summary
86(3)
References
86(3)
5 Image Coding
89(16)
5.1 Introduction
89(1)
5.2 Linear Local Distance Coding Method
90(4)
5.2.1 Distance Vector
91(1)
5.2.2 Local Distance Vector
92(1)
5.2.3 The Algorithm Framework
93(1)
5.3 Experiments and Analyses
94(8)
5.3.1 Experiment Setup
95(1)
5.3.2 Experimental Results on the ICPR2012 Dataset
96(2)
5.3.3 Experimental Results on the ICIP2013 Training Dataset
98(1)
5.3.4 Discussion
99(3)
5.4 Summary
102(3)
References
102(3)
6 Encoding Image Features
105(14)
6.1 Introduction
105(2)
6.2 Encoding Rotation Invariant Features of Images
107(4)
6.2.1 Pairwise LTPs with Spatial Rotation Invariant
107(3)
6.2.2 Encoding the SIFT Features with BoW Framework
110(1)
6.3 Experiments and Analyses
111(6)
6.3.1 Experiment Setup
111(1)
6.3.2 Experimental Results on the ICPR2012 Dataset
112(1)
6.3.3 Experimental Results on the ICIP2013 Training Dataset
113(2)
6.3.4 Discussion
115(2)
6.4 Summary
117(2)
References
117(2)
7 Defining Feature Space for Image Classification
119(16)
7.1 Introduction
119(1)
7.2 Adaptive Co-occurrence Differential Texton Space for Classification
120(7)
7.2.1 Co-occurrence Differential Texton
120(3)
7.2.2 Adaptive CoDT Feature Space
123(1)
7.2.3 HEp-2 Cell Image Representation in the Adaptive CoDT Feature Space
124(3)
7.3 Experiments and Analyses
127(5)
7.3.1 Experiment Setup
127(1)
7.3.2 Experimental Results on the ICPR2012 Dataset
128(1)
7.3.3 Experimental Results on the ICIP2013 Training Dataset
129(1)
7.3.4 Discussion
130(2)
7.4 Summary
132(3)
References
132(3)
8 Conclusions and Perspectives
135
8.1 Major Techniques Developed in the Book
135(1)
8.2 Directions and Future Work
136
References
137