Muutke küpsiste eelistusi

E-raamat: Ceramic Interconnect Technology Handbook

Edited by (University of Arkansas, Fayetteville, USA), Edited by (University of Idaho, Moscow, USA)
  • Formaat: 456 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351837170
  • Formaat - EPUB+DRM
  • Hind: 227,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 456 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781351837170

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Ceramics were among the first materials used as substrates for mass-produced electronics, and they remain an important class of packaging and interconnect material today. Most available information about ceramic electronics is either outdated or focused on their materials science characteristics. The Ceramic Interconnect Technology Handbook goes beyond the traditional approach by first surveying the unique properties of ceramics and then discussing design, processing, fabrication, and integration, as well as packaging and interconnect technologies.

Collecting contributions from an outstanding panel of experts, this book offers an up-to-date overview of modern ceramic electronics, from design and material selection to manufacturing and implementation. Beginning with an overview of the development, properties, advantages, and applications of ceramics, coverage spans electrical design, testing, simulation, thermomechanical design, screen printing, multilayer ceramics, photo-defined and photo-imaged films, copper interconnects for ceramic substrates, and integrated passive devices in ceramic substrates. It also offers a detailed review of the surface, thermal, mechanical, and electrical properties of various ceramics as well as the processing of high- and low-temperature cofired ceramic (HTCC and LTCC) substrates.

Opening new vistas and avenues of advancement, the Ceramic Interconnect Technology Handbook is the only source for comprehensive discussion and analysis of nearly every facet of ceramic interconnect technology and applications.
1 Overview of Ceramic Interconnect Technolgy 1
Aicha Elshabini, Gangqiang Wang, and Dan Amey
1.1 Ceramics in Electronic Packaging
3
1.1.1 Introduction and History
3
1.1.2 Functions of Ceramic Substrate
3
1.1.3 Ceramic Advantages and Limitations
4
1.1.4 Ceramic Compositions
5
1.1.5 Ceramic Substrate Manufacturing
5
1.2 Electrical Properties of Ceramic Substrates
6
1.3 Mechanical and Physical Properties of Ceramic Substrates
8
1.4 Design Rules
8
1.5 Thick Films on Ceramics
10
1.5.1 Introduction and Background
10
1.5.2 Screen Preparation and Inspection
12
1.5.3 Screen-Printing Process
13
1.5.4 Substrate Cleaning and Process Environment
13
1.5.5 Thick-Film Formulations
14
1.5.6 Heat Treatment Processes for Pastes
15
1.5.7 Thick-Film Metallizations
16
1.5.8 Thick-Film Dielectrics
17
1.5.9 Thick-Film Resistors
18
1.6 Thin Films on Ceramics
19
1.6.1 Introduction and Background
19
1.6.2 Thin-Film Process Example
20
1.6.3 Preparation of Substrates
20
1.6.4 Application of Dielectrics
21
1.6.5 Formation of Vias in Dielectrics
23
1.6.6 Metallization of Vias and Interconnect
25
1.6.6.1 Sputtering
26
1.6.6.2 Evaporation
27
1.6.6.3 Electroplating
27
1.6.6.4 Electroless Plating
30
1.6.7 Testing and Rework
32
1.7 High-Current Substrates
32
1.7.1 DBC Process
33
1.7.2 Active Metal Brazing (AMB)
34
1.8 Applications
35
1.8.1 Ceramic Products
37
1.8.1.1 Component
37
1.8.1.2 Integrated Circuit Package
38
1.8.1.3 Functional Module
40
1.8.1.4 System-in-Package
41
1.8.2 Automotive Industry
42
1.8.2.1 Engine Control Unit
42
1.8.2.2 Antilock Brake System Module
43
1.8.2.3 Electronic Fuel Injection Module
44
1.8.3 Military/Avionics Applications
44
1.8.3.1 Military Airborne Communications Multichip Module
44
1.8.3.2 Avionic Multichip Module
45
1.8.3.3 Cockpit Display Module
45
1.8.4 Commercial Wireless
47
1.8.4.1 VCO/Synthesizer
47
1.8.4.2 Antenna Switch
48
1.8.4.3 RF Analog Front End
48
1.8.5 Consumer Electronics
49
1.8.5.1 Digital Camera Circuit
49
1.8.5.2 Hearing-Aid Circuit
49
1.8.6 Space and Satellite Applications
51
1.8.6.1 Satellite Control Circuit
51
1.8.6.2 Satellite Power Control Module
52
1.8.7 Telecommunications
53
1.8.7.1 Digital Switch Line Card
53
1.8.7.2 High-Speed Switch
53
1.8.8 Instrumentation
54
1.8.8.1 Oscilloscope Data Acquisition Circuit
54
1.8.8.2 Differential Probe
56
1.8.9 Power Supply and Control
56
1.8.9.1 DC-to-DC Converter
56
1.8.9.2 Switching Power Supply
57
References
58
2 Electrical Design, Simulation, and Testing 61
Daniel I. Amey and Kuldeep Saxena
2.1 Introduction
62
2.2 Electrical Properties
63
2.2.1 Conductor Properties
63
2.2.1.1 Conductivity
63
2.2.1.2 Skin Depth
63
2.2.1.3 Effect of Surface Roughness
65
2.2.1.4 Conductor Geometry
66
2.2.2 Dielectric Properties
66
2.2.3 Impedance Control
69
2.2.3.1 Gridded Ground
70
2.2.3.2 Dielectric Thickness
71
2.2.4 Propagation delay
71
2.3 Electrical Design Considerations
73
2.3.1 Controlled Impedance Lines
73
2.3.1.1 Microstrip
73
2.3.1.2 Stripline
74
2.3.1.3 Coplanar Waveguide
77
2.3.1.4 Differential Interconnections
77
2.3.2 The Choice of Impedance
79
2.3.3 Guide Wavelength
80
2.3.4 Embedded Passives
81
2.3.4.1 Integral, Buried, Embedded Components
81
2.3.4.2 Capacitors
82
2.3.4.3 Resistors
82
2.3.4.4 Inductors
83
2.3.5 Substrate Size
83
2.4 Electrical and Thermal Design Considerations
84
2.4.1 Electrical Design Tools
84
2.4.2 Thermal Performance
87
2.4.2.1 LTCC
88
2.4.2.2 Thermal Coefficient of Expansion
89
2.4.2.3 AN Thick-Film Technology
90
2.5 Testing and Characterization
91
2.5.1 Material Characterization
91
2.5.1.1 Material Characterization Tests
93
2.5.2 Design for Test
95
2.5.3 High-Frequency Measurements
96
2.5.3.1 Device Parameters
98
2.5.3.2 Calibration
98
2.5.3.3 Calibration Standards
98
2.5.3.4 CPW Probes
99
2.5.3.5 On-Wafer Characterization
99
2.5.3.6 De-Embedding
99
2.5.3.7 Noise
100
2.6 Summary
100
References
101
3 ThermoMechanical Design 105
Al Krum
3.1 Introduction
106
3.2 Fundamentals of Heat Transfer
109
3.2.1 Mechanisms of Heat Transfer
109
3.2.1.1 First Law of Thermodynamics
109
3.2.1.2 Second Law of Thermodynamics
110
3.2.2 Conduction
110
3.2.2.1 Fourier's Law (for conduction only)
110
3.2.2.2 Electrical Analogies
114
3.2.2.3 Heat Spreading
115
3.2.3 Convection
118
3.2.3.1 Natural Convection
118
3.2.3.2 Forced Convection
119
3.2.4 Radiation
121
3.3 Thermal Design
121
3.3.1 Thermal Design Example
123
3.3.2 Heat Sinks
125
3.3.2.1 Natural Convection Example
127
3.3.2.2 Forced Air Example
127
3.3.3 Thermal Interface Materials
127
3.3.3.1 Thermal Grease
128
3.3.3.2 Elastomers
128
3.3.3.3 Thermally Conductive Adhesives
128
3.3.3.4 Phase-Change Materials
129
3.3.3.5 Mica
129
3.3.3.6 Adhesive Tapes
130
3.3.3.7 Solder
130
3.3.4 Air Cooling
130
3.3.5 Liquid Cooling
131
3.3.5.1 Cold Plate
131
3.3.5.2 Immersion Cooling
131
3.3.6 Advanced Cooling Techniques
132
3.3.6.1 Thermoelectric Cooling
132
3.3.6.2 Jet Impingement Cooling
133
3.3.6.3 Heat Pipe Cooling
134
3.3.6.4 Microchannel Cooling
135
3.4 Techniques for lowering thermal resistance
135
3.4.1 Thermal Vias
136
3.4.2 Die Cavities
137
3.4.3 Heat Spreaders
138
3.4.4 Thinner Chips
139
3.5 Mechanical Design Considerations
140
3.5.1 Thermal and Mechanical Stress
140
3.5.1.1 Stress Example
145
3.5.2 Thermomechanical Properties of Materials
145
3.6 Thermal and Mechanical Simulation Tools
146
3.6.1 Finite Element Method
146
3.6.2 Finite Difference Method
147
3.6.3 Flow Network Modeling
147
3.6.4 Computational Fluid Dynamics
148
3.7 Thermal and Mechanical Measurements
148
3.7.1 Direct Thermal Measurement Techniques
149
3.7.1.1 Fiber-Optic Thermometry Probe
149
3.7.1.2 Theta-JC Tester
149
3.7.1.3 Infrared Thermal Imaging
152
3.7.1.4 Liquid Crystal Microthermography
152
3.7.2 Indirect Thermal Measurement Techniques
153
3.7.2.1 Acoustic Microimaging
153
3.7.2.2 X-Ray
154
3.7.2.3 Thermal Test Chip
155
3.7.3 Stress Measurements
157
3.7.3.1 Piezoresistive Stress Sensors
157
3.7.3.2 Moire Interferometry
158
References
158
4 Ceramic Materials 163
Jerry E. Sergent
4.1 Introduction
163
4.2 Substrate Manufacturing
164
4.3 Surface Properties of Ceramics
169
4.4 Thermal Properties of Ceramic Materials
172
4.4.1 Thermal Conductivity
172
4.4.2 Specific Heat
175
4.4.3 Temperature Coefficient of Expansion
176
4.5 Mechanical Properties of Ceramic Substrates
177
4.5.1 Modulus of Elasticity
177
4.5.2 Modulus of Rupture
179
4.5.3 Tensile and Compressive Strength
180
4.5.4 Hardness
182
4.5.5 Thermal Shock
183
4.6 Electrical Properties of Ceramics
184
4.6.1 Resistivity
184
4.6.2 Breakdown Voltage
186
4.6.3 Dielectric Properties
188
4.7 Processing of HTCC Substrates
191
4.8 Processing of LTCC Substrates
192
4.9 Applications
193
References
196
5 Screen Printing 199
Jerry E. Sergent
5.1 Introduction
200
5.2 The Screen
202
5.3 The Stencil
207
5.4 The Paste
208
5.4.1 The Active Element
209
5.4.2 The Adhesion Element
209
5.4.3 The Organic Binder
210
5.4.4 The Solvent or Thinner
210
5.5 Critical Parameters of the Paste
210
5.5.1 Solids Content
211
5.5.2 Particle Size Distribution
211
5.5.3 Viscosity
211
5.6 The Squeegee
217
5.7 The Printing Process
218
5.8 Screen Printer Setup and Operation
222
5.8.1 Screen-to-Substrate Spacing: The Snap-Off Distance
222
5.8.2 The Screen-to-Substrate Parallelism
223
5.8.3 Squeegee Velocity
223
5.8.4 Squeegee Position
223
5.8.5 Squeegee Pressure
223
5.8.6 Attack Angle
223
5.9 Screen Printer Setup
224
5.10 Geometric Effects on Print Thickness
225
5.11 Measurement of Print Thickness
226
5.12 Printing Considerations and Problems
227
5.12.1 Print Resolution
228
5.12.2 Effect of Screen Parameters on Print Parameters
228
5.12.3 Factors that Affect Print Thickness
229
5.12.4 Preventing Pinholes and Voids during Printing
230
5.12.5 Good Practices
230
5.13 Inspecting Printed Films
231
Glossary of Terms
231
References
231
6 Multilayer Ceramics 235
Fred Barlow, Aicha Elshabini, and Arne K. Knudsen
6.1 Introduction
236
6.1.1 High-Temperature Cofired Ceramics
236
6.1.2 Low-Temperature Cofired Ceramics
237
6.2 The Multilayer Ceramic Process
239
6.2.1 Tape Handling and Clean Room Environment
239
6.2.2 Tape Casting
243
6.2.3 Via and Cavity Formation
247
6.2.3.1 Laser Processing
247
6.2.3.2 Mechanical Punching
248
6.2.4 Via Fill
255
6.2.4.1 Stencil-Filled Vias
256
6.2.4.2 Bladder-Filled Vias
256
6.2.5 Screen Printing
259
6.2.6 Inspection
264
6.2.7 Tape Layer Collation
266
6.2.8 Lamination
269
6.2.9 Firing
270
6.2.10 Postprocessing
274
6.2.10.1 Postfired Materials
274
6.2.10.2 Substrate Machining
275
6.3 Design Considerations
277
6.3.1 Design Rules
277
6.3.2 Shrinkage Control
278
6.4 Cofired Materials
278
6.4.1 Cofired Inks
278
6.4.2 Dielectric and Metal Properties
279
6.4.2.1 Medium-Temperature Cofired Ceramics (MTCC)
279
6.4.2.2 Silicon Nitride
280
6.4.2.3 BeO
281
6.4.2.4 Multilayer Aluminum Nitride
282
6.5 Future Trends
283
References
284
7 Photo-Defined, and Photo-Imaged Films 289
William J. Nebe and Terry R. Suess
7.1 Introduction
290
7.2 Photo-Imaged Ceramic Processes
292
7.3 PhotoPolymerization
294
7.4 Photo-Formed Ceramic Compositions, Developed Using Organic Solvents
297
7.5 Aqueous Developable Formulation
298
7.5.1 Ceramic Solids: Filler
299
7.5.2 Inorganic Binder: Glass Frit
301
7.5.3 Photoinitiation System
302
7.5.4 Aqueous Binder: Acid Polymer
303
7.5.5 Photocurable Element
304
7.5.6 Organic Medium
306
7.5.7 Dispersant
308
7.5.8 Additional Components
308
7.5.9 Preparation of Organic Vehicle
309
7.5.10 Preparation of Dielectric Inorganics [ 19]
309
7.5.10.1 Glass
309
7.5.10.2 Ceramic
310
7.5.11 Paste Formulation
310
7.5.12 Processing
312
7.6 Photocurable Conductive Pastes: Background
315
7.6.1 Conductor Paste Formulation
317
7.6.2 Gold Paste Preparation
320
7.6.3 Process
320
7.7 Other Applications of Photocurable Paste Technology
323
Acknowledgments
324
References
324
8 Copper Interconnects for Ceramic Substrates and Packages 327
Al Krum
8.1 Introduction: Why Use Copper?
328
8.1.1 Electrical Resistivity
328
8.1.2 Thermal Conductivity
329
8.1.3 Cost
329
8.1.4 Disadvantages of Copper
330
8.2 Electrical Performance
330
8.2.1 Electrical Resistance
330
8.2.1.1 Thick-Film Copper Resistivity Example
332
8.2.1.2 Direct Bond Copper Resistivity Example
332
8.2.2 Efficiency
332
8.2.3 Propagation Delay
334
8.3 Thermal and Mechanical Properties of Copper
334
8.4 Direct Bond Copper (DBC)
335
8.4.1 DBC Process
336
8.4.2 Thermal Spreading in DBC
339
8.4.2.1 Example of Equivalent Thermal Conductivity of DBC
340
8.4.3 Multilayer DBC
341
8.4.4 Resistors
342
8.5 Active Metal Brazing (AMB)
343
8.5.1 AMB Process
343
8.5.2 AMB Characteristics
344
8.6 Thick-Film Copper
344
8.6.1 Copper Ink Formulations
345
8.6.2 Metallizing Processes
346
8.6.2.1 Screen Printing
346
8.6.2.2 Etched Thick Film
346
8.6.3 Thick Film with Plated Copper
346
8.6.3.1 Process
347
8.6.3.2 Thick Film with Plated Copper Electrical Resistivity Example
350
8.6.3.3 Thick Film with Plated Copper Thermal Example
351
8.6.4 Multiple Conductor Printings
352
8.6.5 Thick-Film Copper Finishes
352
8.7 Thin Film
352
8.8 Plated Copper
354
8.8.1 Electroplating Process
354
8.8.2 Electroless Process
356
8.8.3 Plating Considerations
358
References
358
9 Integrated Passives in Ceramic Substrates 361
Heiko Thust and Jens Muller
9.1 Introduction
362
9.2 Materials and Technologies for Lumped Elements
364
9.2.1 Resistors
365
9.2.2 Capacitor Materials
367
9.2.3 Inductor Materials
368
9.3 Design of Lumped Elements
371
9.3.1 Design of Resistors
373
9.3.2 Design of Capacitors
376
9.3.2.1 Interdigital Capacitors
376
9.3.2.2 Plate Capacitors
378
9.3.3 Design of Inductors
381
9.3.3.1 Planar inductors
382
9.3.3.2 3-D-LTCC Inductors
386
9.4 Trimming of Lumped Elements
390
9.4.1 Resistor Trimming
390
9.4.1.1 Collective Resistor Trimming
390
9.4.1.2 Trimming of Single Resistors
390
9.4.1.3 Laser Trimming of Resistors
392
9.4.1.4 Trimming of Buried Resistors
394
9.4.2 Capacitor Trimming
398
9.4.3 Inductor Trimming
399
9.5 Lumped-Element Properties
401
9.5.1 Properties
401
9.5.1.1 Resistance Value
401
9.5.1.2 Thermal Characteristics
402
9.5.1.3 Voltage Stability
402
9.5.1.4 Long-Time Stability
402
9.5.1.5 Noise Behavior
403
9.5.1.6 Frequency Behavior
403
9.5.2 Capacitor Properties
404
9.5.2.1 Capacitance Value
404
9.5.2.2 Capacitor Model
404
9.5.2.3 Self-Resonance Frequency
404
9.5.2.4 Quality Factor and Loss Tangent
406
9.5.2.5 Breakdown Voltage
407
9.5.2.6 Temperature Coefficient of Capacitance (TCC)
408
9.5.3 Inductor Properties
408
9.5.3.1 Inductance Value
408
9.5.3.2 Series Resistance
409
9.5.3.3 Lumped Inductor Model
410
9.5.3.4 Quality Factor
411
9.5.3.5 High-Frequency Properties of Printed Inductors
412
9.6 LTCC-Integrated Passive Devices
414
9.6.1 Concept of Passive Integrated LTCC Modules
414
9.6.2 Design of LTCC Filter Modules
415
9.7 Distributed Elements
418
9.7.1 Materials and Technology
419
9.7.2 Design Methodology for Distributed LTCC Components
419
9.7.3 LTCC Line-Filter Design Example
421
References
423
Index 427


University of Idaho, Moscow, USA University of Arkansas, Fayetteville, USA