1 Overview of Ceramic Interconnect Technolgy |
|
1 | |
|
Aicha Elshabini, Gangqiang Wang, and Dan Amey |
|
|
|
1.1 Ceramics in Electronic Packaging |
|
|
3 | |
|
1.1.1 Introduction and History |
|
|
3 | |
|
1.1.2 Functions of Ceramic Substrate |
|
|
3 | |
|
1.1.3 Ceramic Advantages and Limitations |
|
|
4 | |
|
1.1.4 Ceramic Compositions |
|
|
5 | |
|
1.1.5 Ceramic Substrate Manufacturing |
|
|
5 | |
|
1.2 Electrical Properties of Ceramic Substrates |
|
|
6 | |
|
1.3 Mechanical and Physical Properties of Ceramic Substrates |
|
|
8 | |
|
|
8 | |
|
1.5 Thick Films on Ceramics |
|
|
10 | |
|
1.5.1 Introduction and Background |
|
|
10 | |
|
1.5.2 Screen Preparation and Inspection |
|
|
12 | |
|
1.5.3 Screen-Printing Process |
|
|
13 | |
|
1.5.4 Substrate Cleaning and Process Environment |
|
|
13 | |
|
1.5.5 Thick-Film Formulations |
|
|
14 | |
|
1.5.6 Heat Treatment Processes for Pastes |
|
|
15 | |
|
1.5.7 Thick-Film Metallizations |
|
|
16 | |
|
1.5.8 Thick-Film Dielectrics |
|
|
17 | |
|
1.5.9 Thick-Film Resistors |
|
|
18 | |
|
1.6 Thin Films on Ceramics |
|
|
19 | |
|
1.6.1 Introduction and Background |
|
|
19 | |
|
1.6.2 Thin-Film Process Example |
|
|
20 | |
|
1.6.3 Preparation of Substrates |
|
|
20 | |
|
1.6.4 Application of Dielectrics |
|
|
21 | |
|
1.6.5 Formation of Vias in Dielectrics |
|
|
23 | |
|
1.6.6 Metallization of Vias and Interconnect |
|
|
25 | |
|
|
26 | |
|
|
27 | |
|
|
27 | |
|
1.6.6.4 Electroless Plating |
|
|
30 | |
|
|
32 | |
|
1.7 High-Current Substrates |
|
|
32 | |
|
|
33 | |
|
1.7.2 Active Metal Brazing (AMB) |
|
|
34 | |
|
|
35 | |
|
|
37 | |
|
|
37 | |
|
1.8.1.2 Integrated Circuit Package |
|
|
38 | |
|
1.8.1.3 Functional Module |
|
|
40 | |
|
1.8.1.4 System-in-Package |
|
|
41 | |
|
1.8.2 Automotive Industry |
|
|
42 | |
|
1.8.2.1 Engine Control Unit |
|
|
42 | |
|
1.8.2.2 Antilock Brake System Module |
|
|
43 | |
|
1.8.2.3 Electronic Fuel Injection Module |
|
|
44 | |
|
1.8.3 Military/Avionics Applications |
|
|
44 | |
|
1.8.3.1 Military Airborne Communications Multichip Module |
|
|
44 | |
|
1.8.3.2 Avionic Multichip Module |
|
|
45 | |
|
1.8.3.3 Cockpit Display Module |
|
|
45 | |
|
1.8.4 Commercial Wireless |
|
|
47 | |
|
|
47 | |
|
|
48 | |
|
1.8.4.3 RF Analog Front End |
|
|
48 | |
|
1.8.5 Consumer Electronics |
|
|
49 | |
|
1.8.5.1 Digital Camera Circuit |
|
|
49 | |
|
1.8.5.2 Hearing-Aid Circuit |
|
|
49 | |
|
1.8.6 Space and Satellite Applications |
|
|
51 | |
|
1.8.6.1 Satellite Control Circuit |
|
|
51 | |
|
1.8.6.2 Satellite Power Control Module |
|
|
52 | |
|
|
53 | |
|
1.8.7.1 Digital Switch Line Card |
|
|
53 | |
|
1.8.7.2 High-Speed Switch |
|
|
53 | |
|
|
54 | |
|
1.8.8.1 Oscilloscope Data Acquisition Circuit |
|
|
54 | |
|
1.8.8.2 Differential Probe |
|
|
56 | |
|
1.8.9 Power Supply and Control |
|
|
56 | |
|
1.8.9.1 DC-to-DC Converter |
|
|
56 | |
|
1.8.9.2 Switching Power Supply |
|
|
57 | |
|
|
58 | |
2 Electrical Design, Simulation, and Testing |
|
61 | |
|
Daniel I. Amey and Kuldeep Saxena |
|
|
|
|
62 | |
|
2.2 Electrical Properties |
|
|
63 | |
|
2.2.1 Conductor Properties |
|
|
63 | |
|
|
63 | |
|
|
63 | |
|
2.2.1.3 Effect of Surface Roughness |
|
|
65 | |
|
2.2.1.4 Conductor Geometry |
|
|
66 | |
|
2.2.2 Dielectric Properties |
|
|
66 | |
|
|
69 | |
|
|
70 | |
|
2.2.3.2 Dielectric Thickness |
|
|
71 | |
|
|
71 | |
|
2.3 Electrical Design Considerations |
|
|
73 | |
|
2.3.1 Controlled Impedance Lines |
|
|
73 | |
|
|
73 | |
|
|
74 | |
|
2.3.1.3 Coplanar Waveguide |
|
|
77 | |
|
2.3.1.4 Differential Interconnections |
|
|
77 | |
|
2.3.2 The Choice of Impedance |
|
|
79 | |
|
|
80 | |
|
|
81 | |
|
2.3.4.1 Integral, Buried, Embedded Components |
|
|
81 | |
|
|
82 | |
|
|
82 | |
|
|
83 | |
|
|
83 | |
|
2.4 Electrical and Thermal Design Considerations |
|
|
84 | |
|
2.4.1 Electrical Design Tools |
|
|
84 | |
|
2.4.2 Thermal Performance |
|
|
87 | |
|
|
88 | |
|
2.4.2.2 Thermal Coefficient of Expansion |
|
|
89 | |
|
2.4.2.3 AN Thick-Film Technology |
|
|
90 | |
|
2.5 Testing and Characterization |
|
|
91 | |
|
2.5.1 Material Characterization |
|
|
91 | |
|
2.5.1.1 Material Characterization Tests |
|
|
93 | |
|
|
95 | |
|
2.5.3 High-Frequency Measurements |
|
|
96 | |
|
2.5.3.1 Device Parameters |
|
|
98 | |
|
|
98 | |
|
2.5.3.3 Calibration Standards |
|
|
98 | |
|
|
99 | |
|
2.5.3.5 On-Wafer Characterization |
|
|
99 | |
|
|
99 | |
|
|
100 | |
|
|
100 | |
|
|
101 | |
3 ThermoMechanical Design |
|
105 | |
|
|
|
|
106 | |
|
3.2 Fundamentals of Heat Transfer |
|
|
109 | |
|
3.2.1 Mechanisms of Heat Transfer |
|
|
109 | |
|
3.2.1.1 First Law of Thermodynamics |
|
|
109 | |
|
3.2.1.2 Second Law of Thermodynamics |
|
|
110 | |
|
|
110 | |
|
3.2.2.1 Fourier's Law (for conduction only) |
|
|
110 | |
|
3.2.2.2 Electrical Analogies |
|
|
114 | |
|
|
115 | |
|
|
118 | |
|
3.2.3.1 Natural Convection |
|
|
118 | |
|
3.2.3.2 Forced Convection |
|
|
119 | |
|
|
121 | |
|
|
121 | |
|
3.3.1 Thermal Design Example |
|
|
123 | |
|
|
125 | |
|
3.3.2.1 Natural Convection Example |
|
|
127 | |
|
3.3.2.2 Forced Air Example |
|
|
127 | |
|
3.3.3 Thermal Interface Materials |
|
|
127 | |
|
|
128 | |
|
|
128 | |
|
3.3.3.3 Thermally Conductive Adhesives |
|
|
128 | |
|
3.3.3.4 Phase-Change Materials |
|
|
129 | |
|
|
129 | |
|
|
130 | |
|
|
130 | |
|
|
130 | |
|
|
131 | |
|
|
131 | |
|
3.3.5.2 Immersion Cooling |
|
|
131 | |
|
3.3.6 Advanced Cooling Techniques |
|
|
132 | |
|
3.3.6.1 Thermoelectric Cooling |
|
|
132 | |
|
3.3.6.2 Jet Impingement Cooling |
|
|
133 | |
|
3.3.6.3 Heat Pipe Cooling |
|
|
134 | |
|
3.3.6.4 Microchannel Cooling |
|
|
135 | |
|
3.4 Techniques for lowering thermal resistance |
|
|
135 | |
|
|
136 | |
|
|
137 | |
|
|
138 | |
|
|
139 | |
|
3.5 Mechanical Design Considerations |
|
|
140 | |
|
3.5.1 Thermal and Mechanical Stress |
|
|
140 | |
|
|
145 | |
|
3.5.2 Thermomechanical Properties of Materials |
|
|
145 | |
|
3.6 Thermal and Mechanical Simulation Tools |
|
|
146 | |
|
3.6.1 Finite Element Method |
|
|
146 | |
|
3.6.2 Finite Difference Method |
|
|
147 | |
|
3.6.3 Flow Network Modeling |
|
|
147 | |
|
3.6.4 Computational Fluid Dynamics |
|
|
148 | |
|
3.7 Thermal and Mechanical Measurements |
|
|
148 | |
|
3.7.1 Direct Thermal Measurement Techniques |
|
|
149 | |
|
3.7.1.1 Fiber-Optic Thermometry Probe |
|
|
149 | |
|
|
149 | |
|
3.7.1.3 Infrared Thermal Imaging |
|
|
152 | |
|
3.7.1.4 Liquid Crystal Microthermography |
|
|
152 | |
|
3.7.2 Indirect Thermal Measurement Techniques |
|
|
153 | |
|
3.7.2.1 Acoustic Microimaging |
|
|
153 | |
|
|
154 | |
|
3.7.2.3 Thermal Test Chip |
|
|
155 | |
|
3.7.3 Stress Measurements |
|
|
157 | |
|
3.7.3.1 Piezoresistive Stress Sensors |
|
|
157 | |
|
3.7.3.2 Moire Interferometry |
|
|
158 | |
|
|
158 | |
4 Ceramic Materials |
|
163 | |
|
|
|
|
163 | |
|
4.2 Substrate Manufacturing |
|
|
164 | |
|
4.3 Surface Properties of Ceramics |
|
|
169 | |
|
4.4 Thermal Properties of Ceramic Materials |
|
|
172 | |
|
4.4.1 Thermal Conductivity |
|
|
172 | |
|
|
175 | |
|
4.4.3 Temperature Coefficient of Expansion |
|
|
176 | |
|
4.5 Mechanical Properties of Ceramic Substrates |
|
|
177 | |
|
4.5.1 Modulus of Elasticity |
|
|
177 | |
|
|
179 | |
|
4.5.3 Tensile and Compressive Strength |
|
|
180 | |
|
|
182 | |
|
|
183 | |
|
4.6 Electrical Properties of Ceramics |
|
|
184 | |
|
|
184 | |
|
|
186 | |
|
4.6.3 Dielectric Properties |
|
|
188 | |
|
4.7 Processing of HTCC Substrates |
|
|
191 | |
|
4.8 Processing of LTCC Substrates |
|
|
192 | |
|
|
193 | |
|
|
196 | |
5 Screen Printing |
|
199 | |
|
|
|
|
200 | |
|
|
202 | |
|
|
207 | |
|
|
208 | |
|
|
209 | |
|
5.4.2 The Adhesion Element |
|
|
209 | |
|
|
210 | |
|
5.4.4 The Solvent or Thinner |
|
|
210 | |
|
5.5 Critical Parameters of the Paste |
|
|
210 | |
|
|
211 | |
|
5.5.2 Particle Size Distribution |
|
|
211 | |
|
|
211 | |
|
|
217 | |
|
|
218 | |
|
5.8 Screen Printer Setup and Operation |
|
|
222 | |
|
5.8.1 Screen-to-Substrate Spacing: The Snap-Off Distance |
|
|
222 | |
|
5.8.2 The Screen-to-Substrate Parallelism |
|
|
223 | |
|
|
223 | |
|
|
223 | |
|
|
223 | |
|
|
223 | |
|
|
224 | |
|
5.10 Geometric Effects on Print Thickness |
|
|
225 | |
|
5.11 Measurement of Print Thickness |
|
|
226 | |
|
5.12 Printing Considerations and Problems |
|
|
227 | |
|
|
228 | |
|
5.12.2 Effect of Screen Parameters on Print Parameters |
|
|
228 | |
|
5.12.3 Factors that Affect Print Thickness |
|
|
229 | |
|
5.12.4 Preventing Pinholes and Voids during Printing |
|
|
230 | |
|
|
230 | |
|
5.13 Inspecting Printed Films |
|
|
231 | |
|
|
231 | |
|
|
231 | |
6 Multilayer Ceramics |
|
235 | |
|
Fred Barlow, Aicha Elshabini, and Arne K. Knudsen |
|
|
|
|
236 | |
|
6.1.1 High-Temperature Cofired Ceramics |
|
|
236 | |
|
6.1.2 Low-Temperature Cofired Ceramics |
|
|
237 | |
|
6.2 The Multilayer Ceramic Process |
|
|
239 | |
|
6.2.1 Tape Handling and Clean Room Environment |
|
|
239 | |
|
|
243 | |
|
6.2.3 Via and Cavity Formation |
|
|
247 | |
|
|
247 | |
|
6.2.3.2 Mechanical Punching |
|
|
248 | |
|
|
255 | |
|
6.2.4.1 Stencil-Filled Vias |
|
|
256 | |
|
6.2.4.2 Bladder-Filled Vias |
|
|
256 | |
|
|
259 | |
|
|
264 | |
|
6.2.7 Tape Layer Collation |
|
|
266 | |
|
|
269 | |
|
|
270 | |
|
|
274 | |
|
6.2.10.1 Postfired Materials |
|
|
274 | |
|
6.2.10.2 Substrate Machining |
|
|
275 | |
|
6.3 Design Considerations |
|
|
277 | |
|
|
277 | |
|
|
278 | |
|
|
278 | |
|
|
278 | |
|
6.4.2 Dielectric and Metal Properties |
|
|
279 | |
|
6.4.2.1 Medium-Temperature Cofired Ceramics (MTCC) |
|
|
279 | |
|
|
280 | |
|
|
281 | |
|
6.4.2.4 Multilayer Aluminum Nitride |
|
|
282 | |
|
|
283 | |
|
|
284 | |
7 Photo-Defined, and Photo-Imaged Films |
|
289 | |
|
William J. Nebe and Terry R. Suess |
|
|
|
|
290 | |
|
7.2 Photo-Imaged Ceramic Processes |
|
|
292 | |
|
|
294 | |
|
7.4 Photo-Formed Ceramic Compositions, Developed Using Organic Solvents |
|
|
297 | |
|
7.5 Aqueous Developable Formulation |
|
|
298 | |
|
7.5.1 Ceramic Solids: Filler |
|
|
299 | |
|
7.5.2 Inorganic Binder: Glass Frit |
|
|
301 | |
|
7.5.3 Photoinitiation System |
|
|
302 | |
|
7.5.4 Aqueous Binder: Acid Polymer |
|
|
303 | |
|
7.5.5 Photocurable Element |
|
|
304 | |
|
|
306 | |
|
|
308 | |
|
7.5.8 Additional Components |
|
|
308 | |
|
7.5.9 Preparation of Organic Vehicle |
|
|
309 | |
|
7.5.10 Preparation of Dielectric Inorganics [ 19] |
|
|
309 | |
|
|
309 | |
|
|
310 | |
|
|
310 | |
|
|
312 | |
|
7.6 Photocurable Conductive Pastes: Background |
|
|
315 | |
|
7.6.1 Conductor Paste Formulation |
|
|
317 | |
|
7.6.2 Gold Paste Preparation |
|
|
320 | |
|
|
320 | |
|
7.7 Other Applications of Photocurable Paste Technology |
|
|
323 | |
|
|
324 | |
|
|
324 | |
8 Copper Interconnects for Ceramic Substrates and Packages |
|
327 | |
|
|
|
8.1 Introduction: Why Use Copper? |
|
|
328 | |
|
8.1.1 Electrical Resistivity |
|
|
328 | |
|
8.1.2 Thermal Conductivity |
|
|
329 | |
|
|
329 | |
|
8.1.4 Disadvantages of Copper |
|
|
330 | |
|
8.2 Electrical Performance |
|
|
330 | |
|
8.2.1 Electrical Resistance |
|
|
330 | |
|
8.2.1.1 Thick-Film Copper Resistivity Example |
|
|
332 | |
|
8.2.1.2 Direct Bond Copper Resistivity Example |
|
|
332 | |
|
|
332 | |
|
|
334 | |
|
8.3 Thermal and Mechanical Properties of Copper |
|
|
334 | |
|
8.4 Direct Bond Copper (DBC) |
|
|
335 | |
|
|
336 | |
|
8.4.2 Thermal Spreading in DBC |
|
|
339 | |
|
8.4.2.1 Example of Equivalent Thermal Conductivity of DBC |
|
|
340 | |
|
|
341 | |
|
|
342 | |
|
8.5 Active Metal Brazing (AMB) |
|
|
343 | |
|
|
343 | |
|
8.5.2 AMB Characteristics |
|
|
344 | |
|
|
344 | |
|
8.6.1 Copper Ink Formulations |
|
|
345 | |
|
8.6.2 Metallizing Processes |
|
|
346 | |
|
|
346 | |
|
8.6.2.2 Etched Thick Film |
|
|
346 | |
|
8.6.3 Thick Film with Plated Copper |
|
|
346 | |
|
|
347 | |
|
8.6.3.2 Thick Film with Plated Copper Electrical Resistivity Example |
|
|
350 | |
|
8.6.3.3 Thick Film with Plated Copper Thermal Example |
|
|
351 | |
|
8.6.4 Multiple Conductor Printings |
|
|
352 | |
|
8.6.5 Thick-Film Copper Finishes |
|
|
352 | |
|
|
352 | |
|
|
354 | |
|
8.8.1 Electroplating Process |
|
|
354 | |
|
8.8.2 Electroless Process |
|
|
356 | |
|
8.8.3 Plating Considerations |
|
|
358 | |
|
|
358 | |
9 Integrated Passives in Ceramic Substrates |
|
361 | |
|
Heiko Thust and Jens Muller |
|
|
|
|
362 | |
|
9.2 Materials and Technologies for Lumped Elements |
|
|
364 | |
|
|
365 | |
|
9.2.2 Capacitor Materials |
|
|
367 | |
|
|
368 | |
|
9.3 Design of Lumped Elements |
|
|
371 | |
|
9.3.1 Design of Resistors |
|
|
373 | |
|
9.3.2 Design of Capacitors |
|
|
376 | |
|
9.3.2.1 Interdigital Capacitors |
|
|
376 | |
|
|
378 | |
|
9.3.3 Design of Inductors |
|
|
381 | |
|
|
382 | |
|
9.3.3.2 3-D-LTCC Inductors |
|
|
386 | |
|
9.4 Trimming of Lumped Elements |
|
|
390 | |
|
|
390 | |
|
9.4.1.1 Collective Resistor Trimming |
|
|
390 | |
|
9.4.1.2 Trimming of Single Resistors |
|
|
390 | |
|
9.4.1.3 Laser Trimming of Resistors |
|
|
392 | |
|
9.4.1.4 Trimming of Buried Resistors |
|
|
394 | |
|
|
398 | |
|
|
399 | |
|
9.5 Lumped-Element Properties |
|
|
401 | |
|
|
401 | |
|
|
401 | |
|
9.5.1.2 Thermal Characteristics |
|
|
402 | |
|
9.5.1.3 Voltage Stability |
|
|
402 | |
|
9.5.1.4 Long-Time Stability |
|
|
402 | |
|
|
403 | |
|
9.5.1.6 Frequency Behavior |
|
|
403 | |
|
9.5.2 Capacitor Properties |
|
|
404 | |
|
9.5.2.1 Capacitance Value |
|
|
404 | |
|
|
404 | |
|
9.5.2.3 Self-Resonance Frequency |
|
|
404 | |
|
9.5.2.4 Quality Factor and Loss Tangent |
|
|
406 | |
|
9.5.2.5 Breakdown Voltage |
|
|
407 | |
|
9.5.2.6 Temperature Coefficient of Capacitance (TCC) |
|
|
408 | |
|
9.5.3 Inductor Properties |
|
|
408 | |
|
|
408 | |
|
9.5.3.2 Series Resistance |
|
|
409 | |
|
9.5.3.3 Lumped Inductor Model |
|
|
410 | |
|
|
411 | |
|
9.5.3.5 High-Frequency Properties of Printed Inductors |
|
|
412 | |
|
9.6 LTCC-Integrated Passive Devices |
|
|
414 | |
|
9.6.1 Concept of Passive Integrated LTCC Modules |
|
|
414 | |
|
9.6.2 Design of LTCC Filter Modules |
|
|
415 | |
|
|
418 | |
|
9.7.1 Materials and Technology |
|
|
419 | |
|
9.7.2 Design Methodology for Distributed LTCC Components |
|
|
419 | |
|
9.7.3 LTCC Line-Filter Design Example |
|
|
421 | |
|
|
423 | |
Index |
|
427 | |