Preface |
|
xv | |
Acknowledgment |
|
xxi | |
About the Author |
|
xxiii | |
Chapter-Wise Description of the Contents |
|
xxv | |
|
Section I ELEMENTS OF THE THEORY OF NUMBERS |
|
|
1 | (160) |
|
1 From Euclid to Lucas: Elementary Theorems Revisited |
|
|
3 | (30) |
|
|
3 | (3) |
|
1.1 The quotient ring Z/rZ (r < 1) |
|
|
6 | (5) |
|
1.2 Congruences modulo a prime |
|
|
11 | (5) |
|
1.3 Fermat's two-squares theorem |
|
|
16 | (3) |
|
1.4 Lagrange's four-squares theorem |
|
|
19 | (3) |
|
|
22 | (4) |
|
|
26 | (7) |
|
|
29 | (1) |
|
|
30 | (3) |
|
2 Solutions of Congruences, Primitive Roots |
|
|
33 | (8) |
|
|
33 | (1) |
|
2.1 Theorems on congruences |
|
|
34 | (3) |
|
|
37 | (1) |
|
|
38 | (3) |
|
|
39 | (1) |
|
|
40 | (1) |
|
3 The Chinese Remainder Theorem |
|
|
41 | (12) |
|
|
41 | (3) |
|
3.2 The Chinese Remainder Theorem |
|
|
44 | (3) |
|
|
47 | (1) |
|
|
48 | (5) |
|
|
49 | (3) |
|
|
52 | (1) |
|
|
53 | (16) |
|
|
53 | (1) |
|
4.1 Abstract Mobius inversion |
|
|
54 | (4) |
|
4.2 Deduction: Mobius inversion of number theory |
|
|
58 | (2) |
|
4.3 The power set P(X) of a finite set X |
|
|
60 | (2) |
|
|
62 | (1) |
|
|
63 | (6) |
|
|
64 | (4) |
|
|
68 | (1) |
|
5 Quadratic Residues (mod r) (r > 1) |
|
|
69 | (14) |
|
|
69 | (1) |
|
5.1 Preliminaries: Gauss' lemma |
|
|
70 | (2) |
|
|
72 | (3) |
|
5.3 Quadratic reciprocity law |
|
|
75 | (1) |
|
5.4 First Supplement to quadratic reciprocity law |
|
|
75 | (1) |
|
5.5 Second supplement to quadratic reciprocity law |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (2) |
|
|
79 | (4) |
|
|
80 | (1) |
|
|
81 | (2) |
|
6 Decomposition of a Number as a Sum of Two or Four Squares |
|
|
83 | (12) |
|
|
83 | (3) |
|
|
86 | (1) |
|
|
87 | (3) |
|
|
90 | (1) |
|
|
90 | (2) |
|
|
92 | (3) |
|
|
93 | (1) |
|
|
94 | (1) |
|
7 Dirichlet Algebra of Arithmetical Functions |
|
|
95 | (20) |
|
|
95 | (1) |
|
7.1 Arithmetical convolutions |
|
|
96 | (1) |
|
|
97 | (1) |
|
7.3 Mobius inversion (another form) |
|
|
98 | (2) |
|
|
100 | (1) |
|
7.5 UFD property of the ring of arithmetic functions |
|
|
101 | (4) |
|
|
105 | (3) |
|
|
108 | (7) |
|
|
110 | (2) |
|
|
112 | (3) |
|
8 Modular Arithmetical Functions |
|
|
115 | (16) |
|
|
115 | (2) |
|
8.1 Eckford Cohen's orthogonal property for Ramanujan sums |
|
|
117 | (4) |
|
8.2 Finite Fourier series representations of even functions (mod r) |
|
|
121 | (3) |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
126 | (5) |
|
|
128 | (1) |
|
|
129 | (2) |
|
9 A Generalization of Ramanujan Sums |
|
|
131 | (14) |
|
|
131 | (1) |
|
9.1 Jordan's totient Jk(r) |
|
|
132 | (1) |
|
9.2 Residue systems (mod k, r) |
|
|
133 | (1) |
|
9.3 A generalization of C(n, r) |
|
|
134 | (3) |
|
|
137 | (1) |
|
|
138 | (2) |
|
|
140 | (5) |
|
|
140 | (3) |
|
|
143 | (2) |
|
10 Ramanujan Expansions of Multiplicative Arithmetic Functions |
|
|
145 | (16) |
|
|
145 | (3) |
|
10.1 Averages of even functions (mod r) |
|
|
148 | (3) |
|
|
151 | (1) |
|
|
152 | (2) |
|
|
154 | (7) |
|
|
156 | (2) |
|
|
158 | (3) |
|
Section II SELECTED TOPICS IN ALGEBRA |
|
|
161 | (84) |
|
11 On the Uniqueness of a Group of Order r(r > 1) |
|
|
163 | (16) |
|
|
163 | (1) |
|
11.1 On the nature of a group of order pq where p, q are primes (with p < q) |
|
|
164 | (6) |
|
11.2 Uniqueness of a group of order r |
|
|
170 | (2) |
|
|
172 | (2) |
|
11.4 A worked-out example |
|
|
174 | (1) |
|
|
174 | (1) |
|
|
175 | (4) |
|
|
175 | (2) |
|
|
177 | (2) |
|
12 Quadratic Reciprocity in a Finite Group |
|
|
179 | (16) |
|
|
179 | (1) |
|
|
179 | (3) |
|
|
182 | (4) |
|
12.3 Quadratic reciprocity in respect of a finite group G |
|
|
186 | (3) |
|
12.4 A worked-out example |
|
|
189 | (1) |
|
|
190 | (5) |
|
|
191 | (1) |
|
|
192 | (3) |
|
13 Commutative Rings with Unity |
|
|
195 | (26) |
|
|
195 | (1) |
|
13.1 Divisibility theory in integral domains |
|
|
195 | (3) |
|
|
198 | (8) |
|
13.3 Irreducibles and primes |
|
|
206 | (2) |
|
|
208 | (2) |
|
13.5 Almost Euclidean domains |
|
|
210 | (2) |
|
13.6 Certain radicals of a ring / semisimplicity |
|
|
212 | (2) |
|
|
214 | (2) |
|
|
216 | (5) |
|
|
217 | (1) |
|
|
218 | (3) |
|
14 Noetherian and Artinian Rings |
|
|
221 | (24) |
|
|
221 | (1) |
|
14.1 Commutative rings with unity |
|
|
222 | (1) |
|
14.2 Properties of noetherian rings |
|
|
223 | (6) |
|
14.3 Lasker-Noether decomposition theorem |
|
|
229 | (6) |
|
|
235 | (2) |
|
|
237 | (3) |
|
|
240 | (5) |
|
|
241 | (2) |
|
|
243 | (2) |
|
Section III GLIMPSES OF THE THEORY OF ALGEBRAIC NUMBERS |
|
|
245 | (54) |
|
|
247 | (26) |
|
|
247 | (1) |
|
|
247 | (1) |
|
|
248 | (11) |
|
15.3 Elements integral over a ring R |
|
|
259 | (3) |
|
15.4 Integral domains having finite norm property |
|
|
262 | (5) |
|
|
267 | (1) |
|
|
268 | (5) |
|
|
269 | (3) |
|
|
272 | (1) |
|
16 Algebraic Number Fields |
|
|
273 | (26) |
|
|
273 | (2) |
|
16.1 Galois Theory for subfields of C |
|
|
275 | (1) |
|
|
276 | (2) |
|
16.3 Algebraic numbers and algebraic number fields |
|
|
278 | (2) |
|
|
280 | (1) |
|
16.5 The ideal class group |
|
|
281 | (6) |
|
16.6 The Diophantine equation x2 + 2y2 = n |
|
|
287 | (1) |
|
16.7 Finiteness of the class number |
|
|
288 | (2) |
|
|
290 | (3) |
|
|
293 | (6) |
|
|
294 | (2) |
|
|
296 | (3) |
|
Section IV SOME ADDITIONAL TOPICS |
|
|
299 | (62) |
|
17 Vaidyanathaswamy's Class-Division of Integers Modulo r |
|
|
301 | (16) |
|
|
301 | (3) |
|
17.1 An example [ 4] of class-division of integers (mod r) |
|
|
304 | (1) |
|
|
305 | (6) |
|
|
311 | (1) |
|
17.4 A worked-out example |
|
|
312 | (2) |
|
|
314 | (3) |
|
|
314 | (2) |
|
|
316 | (1) |
|
18 Burnside's Lemma and a Few of Its Applications |
|
|
317 | (14) |
|
|
317 | (1) |
|
18.1 Action of a group on a set |
|
|
318 | (2) |
|
|
320 | (5) |
|
18.3 A worked-out example |
|
|
325 | (2) |
|
|
327 | (4) |
|
|
327 | (2) |
|
|
329 | (2) |
|
19 On Cyclic Codes of Length n over Fq |
|
|
331 | (20) |
|
|
331 | (2) |
|
19.1 Mathematical formulation |
|
|
333 | (1) |
|
19.2 The binary symmetric channel |
|
|
334 | (2) |
|
|
336 | (1) |
|
19.4 Linear codes of length n over Fq |
|
|
337 | (1) |
|
|
338 | (2) |
|
19.6 g-cyclotomic cosets mod n |
|
|
340 | (1) |
|
19.7 Cyclic codes of length n over Fq |
|
|
341 | (1) |
|
19.8 Factorization of xn - 1 (n ≤ 1) |
|
|
342 | (2) |
|
19.9 The generating polynomial of a cyclic code |
|
|
344 | (2) |
|
19.10 Worked-out examples |
|
|
346 | (1) |
|
|
347 | (4) |
|
|
348 | (1) |
|
|
349 | (2) |
|
20 An Analogue of the Goldbach Problem |
|
|
351 | (10) |
|
|
351 | (1) |
|
20.1 The ring Mn(Z) of n × n matrices |
|
|
352 | (3) |
|
20.2 A matrix analogue of the Goldbach problem |
|
|
355 | (2) |
|
20.3 A worked-out example |
|
|
357 | (1) |
|
|
357 | (4) |
|
|
358 | (1) |
|
|
359 | (2) |
|
Appendix A On the Partition Function p(r) (r ≥ 1) |
|
|
361 | (2) |
|
A.1 Definition and some properties |
|
|
361 | (2) |
|
|
362 | (1) |
|
Appendix B Thumb-Nail Sketches of Biographies of Forty-One Prominent Mathematicians |
|
|
363 | (30) |
|
B.1 Euclid (circa 300 B.C) |
|
|
363 | (1) |
|
B.2 Eratosthenes (276-195/194 B.C) |
|
|
364 | (1) |
|
B.3 Diophantus (circa 250 A.D) |
|
|
365 | (1) |
|
B.4 Aryabhata (476-550 A.D) |
|
|
366 | (1) |
|
B.5 Brahmagupta (b. 598 A.D) |
|
|
366 | (1) |
|
B.6 Madhava(n) of Sangamagrama (circa 1100 A.D) |
|
|
367 | (1) |
|
B.7 Bhaskara II or Bhaskaracharya (Bhaskara, the learned) (1114--1185 A.D) |
|
|
368 | (1) |
|
B.8 Neelakanta Somayajin (1444--1544 A.D) |
|
|
369 | (1) |
|
B.9 Pierre de Fermat (1601--1665) |
|
|
370 | (1) |
|
B.10 Christian Goldbach (1690--1764) |
|
|
370 | (1) |
|
B.11 Leonhard Euler (1707--1783) |
|
|
371 | (1) |
|
B.12 Jean Le Rand d'Alembert (1717--1783) |
|
|
371 | (1) |
|
B.13 Joseph-Louis Lagrange (1736--1813) |
|
|
372 | (1) |
|
B.14 John Wilson (1741--1793) |
|
|
373 | (1) |
|
B.15 Adrien-Marie Legendre (1752--1833) |
|
|
373 | (1) |
|
B.16 Carl Friedrich Gauss (1777--1855) |
|
|
374 | (1) |
|
B.17 Niels Henrik Abel (1802--1829) |
|
|
374 | (1) |
|
B.18 Carl Gustav Jacob Jacobi (1804--1851) |
|
|
374 | (1) |
|
B.19 Johann Peter Gustav Lejeune Dirichlet (1805--1859) |
|
|
375 | (1) |
|
B.20 W. R. Hamilton (1805--1865) |
|
|
376 | (1) |
|
B.21 Eduard E. Kummer (1810--1893) |
|
|
376 | (1) |
|
B.22 Everiste Galois (1811--1832) |
|
|
377 | (1) |
|
B.23 Arthur Cayley (1821--1896) |
|
|
377 | (1) |
|
B.24 F. G. Max Eisenstein (1823--1852) |
|
|
377 | (1) |
|
B.25 Leopold Kronecker (1823--1891) |
|
|
378 | (1) |
|
B.26 Richard Dedekind (1831--1916) |
|
|
378 | (2) |
|
B.27 Peter Ludwig Mejdell Sylow (1832--1918) |
|
|
380 | (1) |
|
B.28 Edouard Lucas (1842--1891) |
|
|
380 | (1) |
|
B.29 Ferdinand Georg Frobenius (1849--1917) |
|
|
381 | (1) |
|
B.30 David Hilbert (1862--1943) |
|
|
381 | (1) |
|
B.31 Jacquess Hadamard (1865--1963) |
|
|
382 | (1) |
|
B.32 De la Vallee Poussin (1866--1962) |
|
|
382 | (1) |
|
B.33 Godfrey Herald Hardy (1877--1947) |
|
|
383 | (1) |
|
B.34 Emmy Noether (1882--1935) |
|
|
384 | (1) |
|
B.35 Srinivasa Ramanujan (1887--1920) |
|
|
384 | (1) |
|
B.36 R. Vaidyanathaswamy (1894--1960) |
|
|
385 | (1) |
|
B.37 Max Zorn (1906--1993) |
|
|
386 | (1) |
|
B.38 S. Minakshisundaram (1913--1968) |
|
|
387 | (1) |
|
B.39 Paul Erdos (1913--1996) |
|
|
388 | (1) |
|
|
388 | (1) |
|
|
388 | (3) |
|
|
389 | (2) |
|
A Table Giving a Comparative Study of Number Theory and Algebra |
|
|
391 | (2) |
|
Appendix C Suggested for Further Study / Reading |
|
|
393 | (6) |
|
|
395 | (4) |
Author Index |
|
399 | (4) |
Index of Mathematical Terms |
|
403 | |