Muutke küpsiste eelistusi

E-raamat: CFD Modelling for Wastewater Treatment Processes

Edited by , Edited by , Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 119,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This Scientific and Technical Report (STR) provides in-depth fundamentals and guidelines regarding Computational Fluid Dynamics (CFD) simulations of Water Resources Recovery Facilities (WRRFs) unit processes (e.g. headworks, aerobic and anaerobic biological reactors, settling tanks, disinfection).

Each unit process is described with respect to:

Literature review and process description

Relevant CFD concepts and modelling approach

Case studies

Future research needs

CFD Modelling for Wastewater Treatment Processes also opens the discussion on two fundamental topics: experimental validation of CFD simulations, and the complementarity between CFD and Chemical Reaction Engineering approaches. This book is intended for undergraduate and graduate students majoring in fields related to wastewater treatment and/or fluid mechanics, as well as researchers and engineers who conduct research and practices in modelling such unit processes. Water resource recovery modelling is not just about lab-scale processes. Now and in the future, it is about improving our understanding of (and designing better) full-scale facilities!
About the
Chapter Authors
xi
Julien Laurent xi
Ingmar Nopens xi
Randal Samstag xii
Jim Wicks xii
Oamien Batstone xii
Christopher Degroot xii
David Fernandes Del Pozo xiii
Alonso G. Griborio xiii
Rainier Hreiz xiii
Anna M. Karpinska Portela xiii
Olivier Potier xiv
Usman Rehman xiv
Stephen Saunders xiv
Tewodros Meless Teshome xiv
Maria Elena Valle-Medina xv
EdWicklein xv
Min Yang xv
Reviewers xvi
Javier Climent xvi
Nelson Marques xvi
Preface xvii
Foreword xix
Acknowledgements xxi
Chapter 1 Why CFD?
1(8)
Randal Samstag
Jim Wicks
1.1 Introduction
1(2)
1.2 Improving Hydraulic Design
3(1)
1.3 Optimizing Tank Geometry
3(1)
1.4 Improving Model Predictions
4(1)
1.5 Use for Calibration of Simpler Models
5(1)
1.6 Optimize Process Control
6(1)
1.7 Conclusions
6(3)
Chapter 2 Fundamentals
9(28)
Randal Samstag
Edward Wicklein
Rainier Hreiz
Julien Laurent
Jim Wicks
Damien Batstone
2.1 Introduction
9(1)
2.2 Governing Equations
9(9)
2.2.1 The transport equation
9(1)
2.2.2 The Navier-Stokes equations
10(1)
2.2.3 Turbulence
11(3)
2.2.4 Scalar transport
14(2)
2.2.5 Multiphase models
16(2)
2.3 Numerical Methods for CFD
18(5)
2.3.1 Discretization
19(2)
2.3.2 Solution approaches for pressure
21(2)
2.3.3 Other topics
23(1)
2.4 Good Modelling Practice
23(14)
2.4.1 Approach and key assumptions
23(3)
2.4.2 CFD model development
26(5)
2.4.3 Convergence
31(1)
2.4.4 Calibration and validation
32(5)
Chapter 3 Hydraulic analysis and headzvorks
37(14)
Edward Wicklein
3.1 Introduction
37(1)
3.2 Hydraulic Analysis
37(8)
3.2.1 Flow distribution
37(1)
3.2.2 Flow splitting analysis
38(4)
3.2.3 Hydraulic profile
42(1)
3.2.4 Pump intakes
43(2)
3.2.5 Outfalls
45(1)
3.3 Headworks
45(2)
3.3.1 Screening
45(1)
3.3.2 Grit removal
45(2)
3.4 Research Needs
47(4)
Chapter 4 Suspended growth tanks
51(44)
Anna M. Karpinska Portela
Usman Rehman
Jim Wicks
4.1 Introduction
51(1)
4.2 Literature Review
52(5)
4.2.1 Gas/liquid transfer
52(1)
4.2.2 The importance of solids
53(1)
4.2.3 Including biokinetics
54(3)
4.2.4 Hybrid systems and rheology
57(1)
4.3 Case Studies
57(31)
4.3.1 CFD modelling of a bioreactor at Eindhoven WRRF
60(16)
4.3.2 CFD modelling of the bioreactor at La Bisbal d'Emporda WWTP
76(12)
4.4 Research Needs
88(7)
Chapter 5 High-rate algal ponds
95(20)
Julien Laurent
Tewodros Meless Teshome
5.1 Introduction
95(1)
5.2 Process Description
96(4)
5.2.1 Photobioreactors
96(1)
5.2.2 High-rate algal pond (HRAP) system
97(3)
5.3 CFD Concepts Relevant to HRAP Modelling
100(3)
5.3.1 Momentum source
101(1)
5.3.2 Specific boundary condition: Inlet Velocity approach
101(1)
5.3.3 Single reference frame (SRF)
101(1)
5.3.4 Multiple reference frame (MRF)
101(1)
5.3.5 Moving mesh
102(1)
5.3.6 Experimental validation
103(1)
5.4 Case Study: Modelling a Pilot-Scale HRAP
103(7)
5.4.1 Geometric design of HRAP
103(1)
5.4.2 Meshing the geometry
103(1)
5.4.3 Solver settings and numerical simulation
104(3)
5.4.4 Virtual tracer experiment
107(1)
5.4.5 Results: geometrical design modifications
107(3)
5.5 Research Needs
110(5)
Chapter 6 Sedimentation
115(38)
Alonso G. Griborio
Maria Elena Valle-Medina
Ed Wicklein
Julien Laurent
6.1 Introduction
115(1)
6.2 Historical Background
116(3)
6.3 Sludge Bulk Fluid Modeling of Clarifiers
119(5)
6.3.1 Primary settling
120(3)
6.3.2 Secondary settling
123(1)
6.4 Process Description and Features to be Included in CFD Model
124(10)
6.4.1 Solids settleability
124(4)
6.4.2 Flocculation
128(1)
6.4.3 Fluid properties: density and rheology
128(2)
6.4.4 Hydraulic regime
130(2)
6.4.5 Significance of biological activity
132(2)
6.5 CFD Modeling Approach
134(9)
6.5.1 Modeling simplifications
134(1)
6.5.2 Shape and geometry
135(4)
6.5.3 Mesh and boundary conditions
139(1)
6.5.4 Turbulence modeling
140(2)
6.5.5 Calibration and validation of CFD results
142(1)
6.6 Case Study
143(2)
6.7 Future Research Needs
145(8)
Chapter 7 Disinfection
153(18)
Christopher DeGroot
Edward Wicklein
Stephen Saunders
7.1 Introduction
153(1)
7.2 Process Background: Disinfection Kinetics
154(3)
7.3 Literature Review
157(6)
7.3.1 Chemical disinfection
157(1)
7.3.2 Ultraviolet disinfection
158(3)
7.3.3 Hydraulic efficiency
161(2)
7.4 CFD Approach
163(1)
7.4.1 Hydraulic efficiency
163(1)
7.5 Case Studies
164(5)
7.5.1 UV case study
164(1)
7.5.2 Contact tank case study
165(4)
7.6 Research Needs
169(2)
Chapter 8 Anaerobic digestion
171(24)
David Fernandes Del Pozo
Damien Batstone
Jim Wicks
8.1 Introduction
171(2)
8.2 Literature Review
173(5)
8.2.1 Single phase
173(2)
8.2.2 Eulerian multiphase models
175(1)
8.2.3 Lagrangian-based CFD modelling
175(2)
8.2.4 Bioreactive modelling
177(1)
8.2.5 Conclusions: literature review
177(1)
8.3 Process Description
178(3)
8.3.1 Mixed digester design
178(3)
8.3.2 Plug-flow digesters
181(1)
8.4 CFD Concepts Relevant to AD Modelling
181(2)
8.4.1 Shear rate
181(1)
8.4.2 Non-Newtonian rheology
182(1)
8.5 CFD Approach
183(7)
8.5.1 Modelling simplifications
183(1)
8.5.2 Eulerian multiphase approach
184(1)
8.5.3 Geometry and mesh
185(1)
8.5.4 Fluid properties
185(3)
8.5.5 Turbulence modelling
188(1)
8.5.6 Monitoring key variables and convergence
189(1)
8.5.7 Validation of CFD results
189(1)
8.6 Research Needs
190(5)
Chapter 9 Validation
195(16)
Min Yang
David Fernandes del Pozo
Ingmar Nopens
9.1 Introduction
195(2)
9.2 Level Classification of Validation for CFD Models
197(2)
9.3 Model Validation Techniques
199(2)
9.3.1 Velocity measurements
199(1)
9.3.2 Video imaging
199(1)
9.3.3 Nuclear magnetic resonance imaging (MRI) and computed tomography (CT) scan
200(1)
9.3.4 Electrodiffusion method (EDM)
200(1)
9.3.5 Residence time distribution (tracer study)
200(1)
9.4 Case Studies Highlighting the Different Levels of Validation for CFD Models
201(2)
9.4.1 Case of a full-scale carrousel ditch
201(1)
9.4.2 Case of a commercial ZeeWeed 500D MBR module
201(2)
9.5 Discussion
203(3)
9.6 Conclusion and Recommendations
206(5)
Chapter 10 How other simulation methods and digital/experimental tracer experiments can be useful for CFD with reactions
211(28)
Olivier Potier
Fulien Laurent
Rainier Hreiz
Damien Batstone
10.1 Introduction
211(2)
10.2 Systemic Modelling
213(6)
10.2.1 Ideal reactor models
213(2)
10.2.2 Non-ideal reactor models
215(3)
10.2.3 Comparison of reactors
218(1)
10.2.4 Example of more complex systemic models
218(1)
10.3 CFD with Reactions
219(2)
10.3.1 Protocol
220(1)
10.3.2 Scalar transport and reactions
220(1)
10.4 Compartmental Modelling
221(2)
10.4.1 General description
221(1)
10.4.2 Definition
221(1)
10.4.3 Examples
222(1)
10.5 Fundamentals of Tracing Experiments and RTD
223(5)
10.5.1 Tracing and RTD methods
223(2)
10.5.2 Tracing experiments
225(1)
10.5.3 Choice of the tracer compound
226(1)
10.5.4 Conducting the tracing experiment
226(1)
10.5.5 Determination of the residence time distribution (RTD)
227(1)
10.6 Residence Time Distribution of Classic Systemic Models
228(3)
10.6.1 Ideal reactors
228(2)
10.6.2 Non-ideal reactors: taking into account dispersion
230(1)
10.7 Tracing Experiments and Virtual Tracer Tests for Calibration of CFD Simulation
231(4)
10.7.1 Turbulent Schmidt number: pitfalls and recommendations
231(1)
10.7.2 Virtual tracer tests in CFD
232(1)
10.7.3 Example of dispersion modelling
233(1)
10.7.4 Comparison of experimental and simulated RTD
234(1)
10.8 Conclusion
235(4)
Index 239