About the Chapter Authors |
|
xi | |
Julien Laurent |
|
xi | |
Ingmar Nopens |
|
xi | |
Randal Samstag |
|
xii | |
Jim Wicks |
|
xii | |
Oamien Batstone |
|
xii | |
Christopher Degroot |
|
xii | |
David Fernandes Del Pozo |
|
xiii | |
Alonso G. Griborio |
|
xiii | |
Rainier Hreiz |
|
xiii | |
Anna M. Karpinska Portela |
|
xiii | |
Olivier Potier |
|
xiv | |
Usman Rehman |
|
xiv | |
Stephen Saunders |
|
xiv | |
Tewodros Meless Teshome |
|
xiv | |
Maria Elena Valle-Medina |
|
xv | |
EdWicklein |
|
xv | |
Min Yang |
|
xv | |
Reviewers |
|
xvi | |
Javier Climent |
|
xvi | |
Nelson Marques |
|
xvi | |
Preface |
|
xvii | |
Foreword |
|
xix | |
Acknowledgements |
|
xxi | |
|
|
1 | (8) |
|
|
|
|
1 | (2) |
|
1.2 Improving Hydraulic Design |
|
|
3 | (1) |
|
1.3 Optimizing Tank Geometry |
|
|
3 | (1) |
|
1.4 Improving Model Predictions |
|
|
4 | (1) |
|
1.5 Use for Calibration of Simpler Models |
|
|
5 | (1) |
|
1.6 Optimize Process Control |
|
|
6 | (1) |
|
|
6 | (3) |
|
|
9 | (28) |
|
|
|
|
|
|
|
|
9 | (1) |
|
|
9 | (9) |
|
2.2.1 The transport equation |
|
|
9 | (1) |
|
2.2.2 The Navier-Stokes equations |
|
|
10 | (1) |
|
|
11 | (3) |
|
|
14 | (2) |
|
|
16 | (2) |
|
2.3 Numerical Methods for CFD |
|
|
18 | (5) |
|
|
19 | (2) |
|
2.3.2 Solution approaches for pressure |
|
|
21 | (2) |
|
|
23 | (1) |
|
2.4 Good Modelling Practice |
|
|
23 | (14) |
|
2.4.1 Approach and key assumptions |
|
|
23 | (3) |
|
2.4.2 CFD model development |
|
|
26 | (5) |
|
|
31 | (1) |
|
2.4.4 Calibration and validation |
|
|
32 | (5) |
|
Chapter 3 Hydraulic analysis and headzvorks |
|
|
37 | (14) |
|
|
|
37 | (1) |
|
|
37 | (8) |
|
|
37 | (1) |
|
3.2.2 Flow splitting analysis |
|
|
38 | (4) |
|
|
42 | (1) |
|
|
43 | (2) |
|
|
45 | (1) |
|
|
45 | (2) |
|
|
45 | (1) |
|
|
45 | (2) |
|
|
47 | (4) |
|
Chapter 4 Suspended growth tanks |
|
|
51 | (44) |
|
Anna M. Karpinska Portela |
|
|
|
|
|
51 | (1) |
|
|
52 | (5) |
|
4.2.1 Gas/liquid transfer |
|
|
52 | (1) |
|
4.2.2 The importance of solids |
|
|
53 | (1) |
|
4.2.3 Including biokinetics |
|
|
54 | (3) |
|
4.2.4 Hybrid systems and rheology |
|
|
57 | (1) |
|
|
57 | (31) |
|
4.3.1 CFD modelling of a bioreactor at Eindhoven WRRF |
|
|
60 | (16) |
|
4.3.2 CFD modelling of the bioreactor at La Bisbal d'Emporda WWTP |
|
|
76 | (12) |
|
|
88 | (7) |
|
Chapter 5 High-rate algal ponds |
|
|
95 | (20) |
|
|
|
|
95 | (1) |
|
|
96 | (4) |
|
|
96 | (1) |
|
5.2.2 High-rate algal pond (HRAP) system |
|
|
97 | (3) |
|
5.3 CFD Concepts Relevant to HRAP Modelling |
|
|
100 | (3) |
|
|
101 | (1) |
|
5.3.2 Specific boundary condition: Inlet Velocity approach |
|
|
101 | (1) |
|
5.3.3 Single reference frame (SRF) |
|
|
101 | (1) |
|
5.3.4 Multiple reference frame (MRF) |
|
|
101 | (1) |
|
|
102 | (1) |
|
5.3.6 Experimental validation |
|
|
103 | (1) |
|
5.4 Case Study: Modelling a Pilot-Scale HRAP |
|
|
103 | (7) |
|
5.4.1 Geometric design of HRAP |
|
|
103 | (1) |
|
5.4.2 Meshing the geometry |
|
|
103 | (1) |
|
5.4.3 Solver settings and numerical simulation |
|
|
104 | (3) |
|
5.4.4 Virtual tracer experiment |
|
|
107 | (1) |
|
5.4.5 Results: geometrical design modifications |
|
|
107 | (3) |
|
|
110 | (5) |
|
|
115 | (38) |
|
|
|
|
|
|
115 | (1) |
|
6.2 Historical Background |
|
|
116 | (3) |
|
6.3 Sludge Bulk Fluid Modeling of Clarifiers |
|
|
119 | (5) |
|
|
120 | (3) |
|
|
123 | (1) |
|
6.4 Process Description and Features to be Included in CFD Model |
|
|
124 | (10) |
|
6.4.1 Solids settleability |
|
|
124 | (4) |
|
|
128 | (1) |
|
6.4.3 Fluid properties: density and rheology |
|
|
128 | (2) |
|
|
130 | (2) |
|
6.4.5 Significance of biological activity |
|
|
132 | (2) |
|
6.5 CFD Modeling Approach |
|
|
134 | (9) |
|
6.5.1 Modeling simplifications |
|
|
134 | (1) |
|
|
135 | (4) |
|
6.5.3 Mesh and boundary conditions |
|
|
139 | (1) |
|
6.5.4 Turbulence modeling |
|
|
140 | (2) |
|
6.5.5 Calibration and validation of CFD results |
|
|
142 | (1) |
|
|
143 | (2) |
|
6.7 Future Research Needs |
|
|
145 | (8) |
|
|
153 | (18) |
|
|
|
|
|
153 | (1) |
|
7.2 Process Background: Disinfection Kinetics |
|
|
154 | (3) |
|
|
157 | (6) |
|
7.3.1 Chemical disinfection |
|
|
157 | (1) |
|
7.3.2 Ultraviolet disinfection |
|
|
158 | (3) |
|
7.3.3 Hydraulic efficiency |
|
|
161 | (2) |
|
|
163 | (1) |
|
7.4.1 Hydraulic efficiency |
|
|
163 | (1) |
|
|
164 | (5) |
|
|
164 | (1) |
|
7.5.2 Contact tank case study |
|
|
165 | (4) |
|
|
169 | (2) |
|
Chapter 8 Anaerobic digestion |
|
|
171 | (24) |
|
|
|
|
|
171 | (2) |
|
|
173 | (5) |
|
|
173 | (2) |
|
8.2.2 Eulerian multiphase models |
|
|
175 | (1) |
|
8.2.3 Lagrangian-based CFD modelling |
|
|
175 | (2) |
|
8.2.4 Bioreactive modelling |
|
|
177 | (1) |
|
8.2.5 Conclusions: literature review |
|
|
177 | (1) |
|
|
178 | (3) |
|
8.3.1 Mixed digester design |
|
|
178 | (3) |
|
8.3.2 Plug-flow digesters |
|
|
181 | (1) |
|
8.4 CFD Concepts Relevant to AD Modelling |
|
|
181 | (2) |
|
|
181 | (1) |
|
8.4.2 Non-Newtonian rheology |
|
|
182 | (1) |
|
|
183 | (7) |
|
8.5.1 Modelling simplifications |
|
|
183 | (1) |
|
8.5.2 Eulerian multiphase approach |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
185 | (3) |
|
8.5.5 Turbulence modelling |
|
|
188 | (1) |
|
8.5.6 Monitoring key variables and convergence |
|
|
189 | (1) |
|
8.5.7 Validation of CFD results |
|
|
189 | (1) |
|
|
190 | (5) |
|
|
195 | (16) |
|
|
|
|
|
195 | (2) |
|
9.2 Level Classification of Validation for CFD Models |
|
|
197 | (2) |
|
9.3 Model Validation Techniques |
|
|
199 | (2) |
|
9.3.1 Velocity measurements |
|
|
199 | (1) |
|
|
199 | (1) |
|
9.3.3 Nuclear magnetic resonance imaging (MRI) and computed tomography (CT) scan |
|
|
200 | (1) |
|
9.3.4 Electrodiffusion method (EDM) |
|
|
200 | (1) |
|
9.3.5 Residence time distribution (tracer study) |
|
|
200 | (1) |
|
9.4 Case Studies Highlighting the Different Levels of Validation for CFD Models |
|
|
201 | (2) |
|
9.4.1 Case of a full-scale carrousel ditch |
|
|
201 | (1) |
|
9.4.2 Case of a commercial ZeeWeed 500D MBR module |
|
|
201 | (2) |
|
|
203 | (3) |
|
9.6 Conclusion and Recommendations |
|
|
206 | (5) |
|
Chapter 10 How other simulation methods and digital/experimental tracer experiments can be useful for CFD with reactions |
|
|
211 | (28) |
|
|
|
|
|
|
211 | (2) |
|
|
213 | (6) |
|
10.2.1 Ideal reactor models |
|
|
213 | (2) |
|
10.2.2 Non-ideal reactor models |
|
|
215 | (3) |
|
10.2.3 Comparison of reactors |
|
|
218 | (1) |
|
10.2.4 Example of more complex systemic models |
|
|
218 | (1) |
|
|
219 | (2) |
|
|
220 | (1) |
|
10.3.2 Scalar transport and reactions |
|
|
220 | (1) |
|
10.4 Compartmental Modelling |
|
|
221 | (2) |
|
10.4.1 General description |
|
|
221 | (1) |
|
|
221 | (1) |
|
|
222 | (1) |
|
10.5 Fundamentals of Tracing Experiments and RTD |
|
|
223 | (5) |
|
10.5.1 Tracing and RTD methods |
|
|
223 | (2) |
|
10.5.2 Tracing experiments |
|
|
225 | (1) |
|
10.5.3 Choice of the tracer compound |
|
|
226 | (1) |
|
10.5.4 Conducting the tracing experiment |
|
|
226 | (1) |
|
10.5.5 Determination of the residence time distribution (RTD) |
|
|
227 | (1) |
|
10.6 Residence Time Distribution of Classic Systemic Models |
|
|
228 | (3) |
|
|
228 | (2) |
|
10.6.2 Non-ideal reactors: taking into account dispersion |
|
|
230 | (1) |
|
10.7 Tracing Experiments and Virtual Tracer Tests for Calibration of CFD Simulation |
|
|
231 | (4) |
|
10.7.1 Turbulent Schmidt number: pitfalls and recommendations |
|
|
231 | (1) |
|
10.7.2 Virtual tracer tests in CFD |
|
|
232 | (1) |
|
10.7.3 Example of dispersion modelling |
|
|
233 | (1) |
|
10.7.4 Comparison of experimental and simulated RTD |
|
|
234 | (1) |
|
|
235 | (4) |
Index |
|
239 | |